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1. Introduction

The present review is designed to encompass the

English language heat transfer papers published in

1996. The papers have been categorized into a number
of sub-®elds. While being exhaustive, some selection is

necessary. Besides reviewing the journal articles of
1996, we also brie¯y mention important conferences

and meetings on heat transfer and related ®elds, major

awards and also books on heat transfer published
during the year.

A Meeting on Molecular and Microscale Heat

Transfer in Materials Processing and Other Appli-

cations was held in Yokohama, Japan on February 2±

7. Topics covered included the following: molecular

dynamics approach to heat conduction, microscale

heat transfer in thin ®lm formation and plasma proces-

sing, and measurement of temperature and thermophy-

sical properties using atomic and molecular scale

phenomena. The Turbulent Heat Transfer Conference

was held on March 10±15 in San Diego, USA. The

3rd International Heat and Mass Transfer Forum was

organized in Minsk, Belarus on May 20±24. The 2nd

European Thermal-Sciences and 14th Italian Union of
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Thermo-Fluid-Dynamics (UIT) National Heat Trans-

fer Conference was held on May 29±31 in Rome, Italy;
sessions were held on experimental work and a variety
of new experimental techniques. The 41st Gas Turbine

and Aeroengine Congress, User's Symposium and
Exhibition ``ASME Turbo Expo'96-Land, Sea and
Air'' was organized by ASME InternationalõÂ s Inter-

national Gas Turbine Institute (IGTI) in Birmingham,
England on June 10±13. Topics covered, among

others, were ®lm cooling of gas turbine blades, internal
heat transfer, including the e�ects of rib roughness, ro-
tation and secondary ¯ows, and external heat transfer

to blades. The 31st AIAA Thermophysics Conference
held on June 18±20 in New Orleans, USA had sessions

on surface catalysis, ablation, direct simulation, Monte
Carlo methods and nonintrusive diagnostics. A Meet-
ing on Advanced Computational Methods in Heat

Transfer was held on July 8±10 in Udine, Italy. Sub-
jects of discussion included convection±di�usion pro-
blems, ®re and combustion simulation, computational

aspects of thermal problems in porous media, metal
casting and forging and combined heat and mass

transfer. The 31st National Heat Transfer Conference
was held in Houston, USA on August 3±6. The pro-
ceedings each day consisted of technical sessions, key-

note lectures and short courses. Of particular interest
were the sessions on extending air cooling limits for
thermal management of electronics, interfacial

phenomena and thermophysics in microgravity, com-
bustion and ®re, solution methods for radiative heat

transfer in participating media and thermal manage-
ment of commercial and military electronics.
The International Symposium on Transient Convec-

tive Heat Transfer organized by the International
Centre for Heat and Mass Transfer (ICHMT) in

Cesme, Turkey on August 19±23 included papers on
boundary layers, internal forced convection, mixed and
free convection, heat exchangers and thermal equip-

ment and conjugate heat transfer. At the 14th Euro-
pean Conference on Thermophysical Properties on
September 16±19 in Villeurbanne, France, sessions cov-

ered measurement methods for thermal conductivity,
di�usivity and e�usivity, optical and radiative proper-

ties, permeability, phase equilibrium and surface ten-
sion for a wide range of materials including metals and
alloys, ceramics, polymers and composites, supercon-

ductors and insulators. At the 4th International Sym-
posium on Heat Transfer on October 7±11 in Beijing,

China, among topics covered were micro heat transfer
in space and time, multiphase ¯ow and heat transfer,
heat and mass transfer in porous media and biological

and cryogenic heat transfer.
At the International Mechanical Engineering Con-

gress and Exposition (formerly known as the Winter

Annual Meeting of the ASME) held on November 17±
22 in Atlanta, USA, technical sessions covered exper-

imental studies in multiphase ¯ow, turbulent heat

transfer, heat transfer in microgravity systems, jets and
sprays, and cryogenic heat transfer in the energy indus-
try. The International Conference on Heat Transfer

with Change of Phase ``HEAT '96'' was held in Kielce,
Poland on December 8±10. Topics covered included
pool boiling, condensation, melting and solidi®cation

and sublimation. The sixth Australasian Heat and
Mass Transfer Conference held on December 9±12 at
the University of New South Wales, Sydney, Australia

included sessions held on contact conductance, heat
transfer in ®res, heat and mass transfer in drying, ex-
perimental methods and environmental heat and mass

transfer.
Awards presented in 1996 included the (1995) Max

Jakob Award to Professor Arthur E. Bergles for his
outstanding contributions in the areas of enhanced
heat transfer, two-phase ¯ow and boiling heat transfer

and internal laminar ¯ows, the (1995) Donald Q. Kern
Award of the AIChE to Dr. George Banko� and the
1996 Heat Transfer Memorial Awards to Professor

Boris Rubinsky (Art of Heat Transfer), Professor Ping
Cheng (Science) and Professor Leroy `Skip' Fletcher
(General). The Luikov Award instituted by the

ICHMT was given to Dr. Geo�rey Hewitt.
Several books on heat transfer, related to both fun-

damentals and applications, were published during the
year:
Advanced Computational Methods in Heat Transfer

IV
L. C. Wrobel, C. A. Brebbia, A. J. Nowak
Publisher: Computational Mechanics

Advances in Heat Transfer : Transport Phenomena
in Materials Processing (Vol. 28)

James P. Hartnett
Publisher: Academic Press
Advances in Numerical Heat Transfer, Vol. 1

W. J. Minkowycz, E. M. Sparrow (Eds.)
Publisher: Hemisphere

Chemical Engineering : Fluid Flow, Heat Transfer
and Mass Transfer Vol. 1 (5th ed.)
J. M. Coulson, J. F. Richardson, J. R. Blackhurst

and J. H. Harker
Publisher: Butterworth±Heinemann

Computational Heat Transfer Vol. 1
A. A. Samarskii, P. N. Vabishchevich
Publisher: Wiley

Computational Heat Transfer: The Finite Di�erence
Methodology Vol. 2

A. A. Samarskii, P. N. Vabishchevich
Publisher: Wiley
Convective Flow Boiling: Proceedings of Convective

Flow Boiling, an International Conference Held at the
Ban� Center for Conferences, Ban�, Alberta

John C. Chen (Ed.), Yasunobu Fujita, Franz
Mayinger
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Publisher: Taylor & Francis

The Finite Element Method in Heat Transfer Analy-
sis
R. W. Lewis, K. Morgan (Eds.)

Publisher: Wiley
The Finite Element Method in Heat Transfer Analy-

sis

R. W. Lewis (Ed.)
Publisher: Wiley

Flow and Heat Transfer in Rotating-Disc Systems:
Rotating Cavities (Vol. 2)
J. M. Owen, R. H. Rogers

Publisher: Wiley
Fundamentals of Heat and Mass Transfer (4th ed.)

and Interactive Heat Transfer Set

David P. DeWitt, Frank P. Incropera
Publisher: Wiley

Gas-Turbine Regenerators
Douglas Stephen Beck, David Gordon Wilson and

Douglass Beck

Publisher: Chapman & Hall
Heat and Mass Transfer in Severe Nuclear Reactor

Accidents

J. T. Rogers (Ed.)
Publisher: Begell House

Heat Transfer
C. Suryanarayana
Publisher: PWS

Heat Transfer: A Self-Instructional Problem Work-
book
Joseph P. Reynolds, Ihab H. Farag

Publisher: ETS
Heat Transfer in Condensation

R. Vidil (Ed.)
Publisher: Elsevier
Heat Transfer Technologies and Practices For E�ec-

tive Energy Management
G. Sam Samdani (Ed.)
Publisher: McGraw-Hill

Heat and Mass Transfer Under Plasma Conditions:
Proceedings of International Symposium on Heat and

Mass Transfer Under Plasma Conditions
Publisher: Begell House
Introduction to Heat Transfer (3rd ed.) and Interac-

tive Heat Transfer Set
David P. DeWitt, Frank P. Incropera
Publisher: Wiley

Introduction to Thermodynamics and Heat Transfer
(McGraw-Hill Series in Mechanical Engineering)

Yunus A. Cengel
Publisher: McGraw-Hill
Latent Heat Transfer: An Introduction to Funda-

mentals (Oxford Engineering Science Series, No. 43)
G. S. H. Lock
Publisher: Oxford University Press

Macro-To Microscale Heat Transfer: The Lagging

Behavior (Series in Chemical and Mechanical Engin-
eering)

D. Y. Tzou
Publisher: Taylor & Francis
Principles of Heat Transfer (5th ed.)

Frank Kreith, Mark S. Bohn
Publisher: PWS
Principles of Heat Transfer in Porous Media (2nd

ed.)
M. Kaviany
Publisher: Springer-Verlag

Process, Enhanced, and Multiphase Heat Transfer:
A Festschrift for A.E. Bergles
A. E. Bergles (Ed.)
Publisher: Begell House

Radiation Heat Transfer in Disperse Systems
L. A. Dombrovsky
Publisher: Begell House

Radiative Heat Transfer I: Proceedings of the First
International Symposium on Radiation Transfer,
Kusadasi, Turkiye, August 13±18, 1995

M. Pinar Menguc (Ed.)
Publisher: Begell House
Transport Phenomena in Materials Processing

Sindo Kou
Publisher: Wiley
Two-Phase Flow and Heat Transfer (Oxford Chem-

istry Primers, 42)

P. B. Whalley
Publisher: Oxford University Press

2. Conduction

Various papers encompassing Conduction Heat
Transfer are reviewed in this section. The relevant

papers are subcategorized into the following topics:
contact conduction/contact resistance; layered, compo-
site or heterogeneous media and other e�ects; thermal

waves, laser and pulse heating e�ects and/or appli-
cations; heat conduction in ®ns, tubes, solids and
di�erent geometries; mathematical models, analytic/nu-

merical, and experimental studies; thermo-mechanical
issues; inverse problems; conduction±convection and
¯ow e�ects; solidi®cation and change of phase, micro-
electronic heat transfer; materials processing and pro-

cess modeling; specialized and miscellaneous studies
and applications.

2.1. Contact conduction/contact resistance

The papers in this subcategory deal with errors in

the analysis of a lumped parameter assumption and
heat ¯ow in surfaces which accounts for thermal con-
tact resistance [1A]; issues involving thermal contact
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conductance in diamond-like ®lms and refractory cer-
amic coatings [2A,3A]; a closed form solution of junc-

tion to substrate thermal resistance in semi-conductor
chips [4A]; and models for elastoplastic contact con-
ductance for isotropic con®rming rough surfaces and

contact conductance of tool steel [5A,6A]. The e�ects
of interface resistance on the heat transfer in cold roll-
ing of steel appears by [7A].

2.2. Composite and heterogeneous media

Issues encompassing e�ective thermal conductivity
in composite media are addressed in
[8A,9A,11A,12A,17A]. Other papers dealing with ther-

mal aspects in this subcategory include: a model for in-
situ tow placement of thermoplastic composites [10A],
issues regarding the thermoelastic ®eld in composites

with inhomogeneities [13A], design of a tungsten/cop-
per graded composite for high heat ¯ux components
[14A], optimization of multi-layer high temperature
insulation [18A], thermal stress analysis and pultrusion

of cypoxy matrix composites [15A,16A], and interface
properties of nanocomposites employing nonlinear
optics [19A].

2.3. Thermal waves, laser and pulse heating applications

A paper on laser annealing of silicon appears by
[20A], [21A] and [22A] discuss hyperbolic propagation
of thermal phenomenon in an in®nite solid medium

and a cylindrical solid carrying a stead-periodic electric
®eld, respectively. Recent progress in laser surface
treatment as pertaining to laser wavelength issues

appear in [23A]. [24A,25A] discuss thermal inertia of
materials and velocity of thermal waves generated by
femtosecond laser pulses in thick gold ®lms, respect-
ively. [26A±31A] describe analytic solutions and issues

for a variety of situations for problems in¯uenced by
non-Fourier heat conduction. The so-termed ®rst and
second-law e�ciencies for laser drilling of stainless

steel appears by [32A], and [33A] describes heat con-
duction in a semi-in®nite solid due to a time-dependent
laser source.

2.4. Heat conduction in ®ns, tubes, solids and di�erent
geometries

[34A] describe optimum design of radiating and con-
vective-radiating ®ns, and the study of heat removal

from tubes with external longitudinal ®ns appears by
[35A]. Other related studies involving ®n/tube geome-
tries and solids appear in [36A±53A].

2.5. Mathematical models, simulations and/or
experimental results

Numerous papers appear in this category dealing
with closed form solutions, analytic approximation,
numerical simulations and experimental studies on a

variety of applications including heat conduction.
Those dealing with providing analytic/approximate sol-
utions appear due to [54A], [67A], [73A], [78A], and

[79A]. Those dealing with numerical simulations and
applications involving control volume methods, ®nite
element, boundary element and the like appear for
di�erent applications in [55A±66A,68A±72A,74A±

77A,80A,81A,83A±91A,94A±100A]. Other related ex-
perimental and/or comparative studies appear due to
[82A], [92A], and [93A].

2.6. Thermo-elastic and thermo-mechanical problems

[101A] describes a thermoelasto-hydrodynamic
analysis of ®xed geometry thrust bearings. The inter-
action of a crack and a circular elastic inclusion under
uniform heat ¯ow appears by [102A]. A numerical in-

vestigation of a ®nite multi-grid solver for thermo-elas-
tic stress analysis in anisotropic materials appears
[103A] and that of three-dimensional thermoelastic

contact between two plates with bolted joints appears
by [104A]. [108A] discuss Biot's number and thermal
stress ®elds in liquid quenches for ceramics. [109A] dis-

cuss thermo-mechanical issues during di�usion binding
of metal drum rotor disks under electromagnetic heat-
ing. Other relevant papers involving thermal stresses

for an in®nite plate containing a penny-shaped crack,
thermally induced bending vibrations, axissymmetric
thermal stresses in steady state and in transient beha-
vior in composite brake disks, in functionally graded

materials, and control of deformation in laminated
plates and appears due to [105A±107A,110A±112A].

2.7. Inverse problems and applications

The comparison of some inverse heat conduction

methods using experimental data appears by [113A]. A
semi-numerical method for solving inverse heat con-
duction problems is studied by [114A] and [115A] dis-
cusses a second-order ®nite di�erence approximation

for inversely determining thermal conductivity.

2.8. Flow/convection e�ects and change of phase

The papers appearing in this subcategory deal with
the in¯uence of ¯ow and /or convection e�ects on heat

conduction with and/or without considerations invol-
ving change of phase. [117A] describe a modi®ed e�ec-
tive capacitance method for solidi®cation modeling.
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[118A,119A] study heat transfer e�ects in spheres and
[120A] discuss heat transfer between a spherical droplet

particle and a two-phase ¯uid. An investigation of the
relations between the results in heat conduction pro-
blems appears by [121A]. Other related studies invol-

ving heat transfer in¯uenced by convective heat
transfer appear due to [116A,122A±131A].

2.9. Microelectronic heat transfer

In this subcategory, [132A] investigated thermal
modeling in integrated power circuits; [133A] describes

thermal conduction in nonhomogeneous CVD dia-
mond layers in electronic microstructures; [134A] con-
duct a comparison of the cooling performance of

staggered and in-line arrays of a polymer insulator;
[135A] describe electrical and thermal performance of
a polymer insulator; and [136A] conduct a study on
board and system level e�ects on plastic package ther-

mal performance.

2.10. Miscellaneous studies and special applications

A variety of specialized applications and other mis-
cellaneous studies also appear in the heat conduction
category. These are identi®ed in papers [137A±171A].

3. Boundary layers and external ¯ows

The papers on boundary layers and external ¯ows
for 1996 have been categorized as follows: ¯ow in¯u-
enced externally, ¯ows with special geometric e�ects,

compressible and high-speed ¯ows, analysis and model-
ing techniques, unsteady ¯ow e�ects, ¯ows with ®lm
and interfacial e�ects, ¯ows with special ¯uid types

and property e�ects, and ¯ows with combustion or
reaction.

3.1. External e�ects

Papers which focus on external e�ects document the
in¯uence of elevated freestream turbulence on heat
transfer [9B,7B] or of the unsteadiness due to the

presence of an adjacent rod [8B,3B] or a vibrating wall
surface [6B]. One with an elevated freestream turbu-
lence was also strongly thermally strati®ed [4B].

Another paper in this category investigated the e�ects
of extra rates of strain on turbulent transport [5B]
while one noted the gravitational e�ect on heat trans-

fer from horizontal surfaces [1B]. The ®nal paper in
this category [2B] determined the current density limit
within electrodeposition cells.

3.2. Geometric e�ects

Several papers focused on geometrical e�ects on

heat transfer in the stagnation region of a blunt
object [16B,12B,17B,14B]. Several were on the heat
transfer from cylinders in cross ¯ow [10B,21B,26B,27B,

13B,15B]. One [13B] extended this study to include
spheres and another [15B] investigated tubular reactor
geometries. One study documented heat transfer in the

endwall-boundary layer region downstream of a
streamlined strut [25B] while another computed the
¯ow transition over a turbine airfoil [28B]. There were
several papers which documented the improvement in

heat transfer one can ®nd with augmentation devices;
one spoke of augmentation in general [11B], one inves-
tigated a chevron-type heat exchanger surface [20B]

while several looked at trenches, dimples and protuber-
ances [24B,18B]. Rather special geometries were, asym-
metric-ribbed surfaces [19B], a damper of a water

heater [22B], and a stretching sheet [23B].

3.3. Compressibility and high-speed ¯ow e�ects

The most common subtopic of papers on compressi-
bility investigated shock-boundary layer interaction
e�ects. Papers on this category included a review of

the topic [39B], several on modeling [30B,38B,33B,
41B], one on measurements [32B], one which documen-
ted the e�ects of upstream in¯uences [36B], and

another which focused on expansion corner e�ects
[43B]. There were several fundamental studies on com-
pressible ¯ow e�ects which included one on electron

and vibration kinetics [31B], another on boundary
layer transition [35B], and another which presented a
nonequilibrium algebraic model for turbulent density
¯uctuations [42B]. Two papers which were speci®c to a

geometry included one with a blunt core [34B] and
another with a transverse jet [37B]. One paper dis-
cussed the boundary layer with an impulsively-started

wedge [29B] and another discussed hot-wire measure-
ments in hypersonic ¯ows [40B].

3.4. Analysis and modeling

There was considerable activity in the modeling cat-
egory. Papers on model development included a review

of papers on numerical heat transfer [59B], the intro-
duction of a new dimensionless number for forced con-
vection heat transfer [46B], a mechanistic model of

heat transfer from a wall to a ¯uid [50B], an evaluation
of temperature e�ects in laminar boundary layer stab-
ility [49B], molecular modeling of shear ¯ow [57B],

and modeling of the turbulent transport of heat
[44B,60B,61B]. Modeling was tested against a retarded
boundary layer [53B], general advection±di�usion
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problems [58B], a planar Couette ¯ow [48B], turbine
cascade ¯ows [45B], and electronic modules [52B].

Other applications included separated and impinging
¯ows [51B], thermally strati®ed ¯ows [56B,47B], ther-
mally mixed ¯ows [55B], and atmospheric boundary

layers [54B].

3.5. Unsteady e�ects

Unsteadiness was the theme for papers which inves-

tigated an impulsively started plate [63B], a step in
cooling [62B], oscillating ¯ow [65B], and boundary
layer transition [67B, 68B]. Application papers

included a study of thermal ¯ow sensor dynamics
[66B], and others on the unsteadiness of a three-dimen-
sional wake [64B] or the junction of a cylinder and a
boundary layer [69B].

3.6. Films and interfacial e�ects

Flows in this category included several on falling
®lms; one with a gravity-driven laminar ®lm [75B],

another with water and lithium bromide [72B], one
with roll waves [74B], and one in a falling ®lm reactor
[71B]. Other geometries included a two-phase, gas±

liquid ¯ow [73B] and an evaporating spray [70B].

3.7. E�ects of ¯uid type or ¯uid properties

In this category, the Colburn analogy was evaluated

for nonNewtonian liquids [87B], and heat transfer
boundary layer solutions were found for a power-law
¯uid [81B]. One analysis of a ¯at plate boundary layer
was done for a micropolar ¯uid [82B] while another

investigated experimentally a micro¯uid system [85B].
Two papers dealt with super¯uid helium [84B,77B],
one in a boundary layer and another in a channel. A

Dittus±Boelter type expression for heat transfer in
¯uids at supercritical pressures was suggested which
had a new method for ®nding the equivalent speci®c

heat [80B] and expressions were presented for heat
transfer in a rare®ed gas [78B]. Two computational
papers were presented for particle-laden ¯ows
[76B,86B], one recommended a particular treatment of

the carrier gas and another presented a new technique
for dealing with particle-induced disturbances. Finally,
a study was applied to the mass transfer resistance in

the pervaporation process [83B] and another speci®-
cally dealt with heat transfer in food products [79B].

3.8. Flows with combustion and reaction

Several papers in this category dealt with combus-
tion processes, one showed heat loss e�ects on turbu-
lent ¯ame propagation [88B], another looked at heat

transfer in a reverse ¯ow combustor [91B], a third
[95B] discussed di�usion ¯ames under microgravity

conditions, another investigated combustion wave pro-
pagating through a heterogeneous powder mixture
[94B], and one reviewed ¯ame impingement heat trans-

fer correlations for industrial heating and melting
[89B]. Two papers dealt with condensation and depo-
sition; one presented a hydrodynamic principle for

CVD reactors which allow homogeneous deposition of
layers [93B] and another shows measurements of con-
vection ¯ows in physical vapor deposition [92B]. A nu-

merical model was presented for analyzing hot-spot
formation and growth to detonation in condensed-
phase energetic materials [90B].

4. Channel ¯ows

Channel ¯ows were divided into the following subca-

tegories: straight-walled ducts; irregular geometries;
®nned and pro®led ducts; ducts experiencing secondary
motion; pulsatile or oscillatory ¯ow; two-phase ¯ow in
ducts [also see separate section on two-phase ¯ow];

nonNewtonian ¯ow; and miscellaneous duct ¯ows.

4.1. Straight-walled ducts

Heat transfer in straight-walled ducts continues to
be an active area of research. General correlations for

turbulent ¯ow and heat transfer in ducts were exam-
ined in a number of studies [20C,29C,30C]. The Graetz
problem was considered for liquid metals [32C] and in

rari®ed gas ¯ows [2C]. Mixed forced and natural con-
vection was examined by several authors. Unstable
mixed convection was studied in bottom heated hori-
zontal [17C] and inclined [18C] ducts; external bound-

ary conditions were also addressed [13C]. Mixed
convection in vertical tubes was studied [9C±12C].
Laminar heat transfer was investigated between paral-

lel plates [26C] and in a vertical heated channel [21C].
Entrance e�ects were considered in He II ¯ow [16C],
in annular ducts under mixed convection [22C], in gas-

cooled beam windows [28C], and for laminar forced
convection [1C]. A ®nite volume method of lines was
used to study turbulent forced convection in circular
tubes [3C]; the numerical method SIMPLE-C was used

to study mixed convection between parallel plates [4C].
Three-dimensional transient calculations were made for
¯ow far downstream in a horizontal duct heated from

below [5C]; entropy calculations were made for ¯ow
through a duct as a function of length [6C]. A numeri-
cal simulation of mixed convection was conducted [7C]

as well as one in zero gravity for water near its critical
point [14C,15C]. The upstream migration of heat was
examined in a horizontal parallel plate duct [8C]. Heat
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transfer analysis was undertaken using the axial
moment method [31C] and through inverse analysis

[19C,23C]. Flow and heat transfer in capillary tubes
were studied for CFC-12 and HFC-134A [33C]; forced
convection of FC-77 was also examined [25C]. Analyti-

cal velocity and temperature distributions were investi-
gated for laminar ¯ow for H2 boundary conditions
[27C]. Combined buoyancy e�ects were addressed in

horizontal rectangular ducts [34C] as well as low Mach
number compressible ¯ows [24C].

4.2. Irregular geometries

Although the straight-walled duct is attractive as a
testing ground for fundamental experimental work and

computational methods, many practical situations fall
into the category of irregular geometries. Heat transfer
in a bayonet tube was studied for laminar ¯ow [44C],
during laminar-turbulent transition [43C], and for

Prandtl number e�ects [42C]. Combined convection
¯ow in a vertical eccentric annulus was studied over a
range of parameters, including Grashof, Prandtl and

Reynolds number [40C]. Flow di�usion and the
accompanying heat transfer were investigated in an
axisymmetric annular duct [48C] and in a pipe-expan-

sion ¯ow [39C]. Forced convection was also studied in
microchannels; in one study water ¯ow was examined
[45C] and in another binary mixtures were considered

[46C]. A numerical investigation of turbulent forced
convection in rectangular and trapezoidal ducts was
undertaken to assess the appropriateness of various
turbulence models [47C]. A hexagonal lattice of circu-

lar tubes was examined using the manipulation system
REDUCE [38C]. A ®nite element solution for forced
convection heat transfer in plate-type monolith struc-

tures was done [37C]. Flow in a double-sine shaped
duct for fully developed laminar ¯ow was simulated
using a Galerkin integral method [36C]; laminar mixed

convection in a vertical elliptic duct was investigated
using a control volume based numerical scheme [49C].
A simpli®ed model for real gas expansion between two
reservoirs was developed [35C] and the thermal devel-

opment of radiatively active pipe ¯ow was studied with
nonaxisymmetric heat loss [41C].

4.3. Finned and pro®led ducts

Heat transfer augmentation is often achieved using
protuberances of one type or another; the accompany-

ing pressure drop penalty must also be addressed. Elec-
tronic packaging presents a practical environment
where surface pro®ling is present and needs to be

understood. Forced convective air cooling of electronic
components was examined [58C]; the heat transfer and
associated pressure drop was also addressed [63C]. A

comprehensive review of enhanced tubes was found in
the literature [70C]. Thermally active and inactive per-

forated ribs were studied in a low-aspect ratio channel
[62C] as well as in a 2D/3D rib-roughened annulus
[75C]. The heat transfer and pressure drop in tubes

with short turbulators was studied [64C]; an internally
®nned equilateral triangular duct was investigated ex-
perimentally [52C]. Analysis and performance compari-

sons of integrally enhanced tubes was conducted [71C]
as was the laminar ¯ow and heat transfer in internally
®nned tubes [73C]. The impact of arti®cial roughness

on turbulent heat transfer coe�cients was studied in
the entrance region of a circular duct [66C]. Comp-
lementary experimental [74C] and numerical [56C] stu-
dies of heat transfer in corrugated passages were

conducted. The disturbances and heat transfer e�ects
caused by vortex generators were examined in a nu-
merical and experimental study [51C]; a vortex genera-

tor placed above a rib was also studied [67C]. The role
of multiple obstructions on conjugate forced heat
transfer in tubes was addressed [72C]; general corre-

lations for pressure drop and heat transfer in enhanced
tubes with turbulent ¯ow were found in the literature
[69C]. Laminar ¯ow in a circular duct with circumfer-

ential tubes was analyzed [68C] as well as one with
inserted longitudinal strips [60C]. Local heat transfer
coe�cients were determined for ¯ow over a ribbed sur-
face [59C]; a converging passage with discrete ribs was

also studied [61C]. The e�ect of size of a wire-screen
matrix on a regenerator was examined in a cryocooler
[53C]; the e�ect of tube-tape clearance in a horizontal

isothermal tube was investigated experimentally [50C].
Single-phase heat transfer in micro®n tubes was
addressed [77C]. Numerical predictions of heat transfer

augmentation in tubes with two-dimensional square
ribs were presented [76C]. The impact of single rough-
ness elements was investigated with a surface-mounted
heated block [54C,55C]; the disturbing e�ect of ¯uid

injection was also studied [57C]. The turbulent velocity
and temperature characteristics in a heated rod bundle
were documented [65C]. An experimental study was

conducted to determine the heat transfer response to
relative humidity in source arrays [78C].

4.4. Duct ¯ows with secondary motion

The most common ¯ow studied in the literature
during 1996 involving secondary motion was that in
curved or helically coiled pipes. E�ects of Dean vortex

pairs on heat transfer were studied [86C] as well as the
well-known relaminarization phenomenon [89C]. The
secondary motion in helically coiled pipes was studied

in air±water ¯ows [90C], for ®nite pitch [79C] and for
substantial pitch [91C]. Second moment closures were
examined to handle the complicated three-dimensional
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motion in a U-shaped tube [81C]. The analogies
between turbulent ¯ow in curved pipes and orthog-

onally rotating pipes were provided [82C]; the e�ect of
Rossby number was investigated in rotating curved
pipes [83C]. The secondary motion imposed by vortex

¯ow was studied in a horizontal rectangular duct
[87C]. Heat and mass transfer was examined in a ser-
pentine channel with right-angle turns [80C] as well as

in a curved pipe with a coaxial core [88C]. Streaming
motion was studied in tube refrigerators [85C] and in
transformer oil [84C].

4.5. Oscillatory and pulsatile ¯ow

A numerical study of turbulent forced convection in

a periodically ribbed channel with oscillatory ¯ow was
achieved using a sinusoidally varying pressure gradient
[93C]. The reciprocating ¯ow and heat transfer in a cir-
cular pipe was studied in both instantaneous and

cycle-averaged quantities [100C]. The oscillatory ¯ow
in ba�ed tubes was reviewed in the literature [97C];
¯ow mixing, heat transfer and mass transfer issues

were considered. The forced turbulent convection
between parallel plates experiencing sinusoidal inlet
temperature variations was studied [92C], as well as

the viscous dissipation and heat transfer in pulsatile
¯ow of a yield-stress ¯uid [94C]; also see non-Newto-
nian ¯uids below. The e�ects of pulsation on internal

heat transfer in a circular tube were addressed in an
experimental study [95C]. A simpli®ed analysis of the
liquid oscillatory motion in circular pipes is provided
based on experimental results [99C]. Discrepancies

between mathematical and physical understanding of
con®ned oscillatory ¯ow was addressed using new par-
ameters [96C]. The e�ect of small transverse accelera-

tions on Bridgeman growth was also considered [98C].

4.6. Two-component duct ¯ows

Flows involving more than one phase or material
are listed here and in a separate section in this review
on two-phase ¯ows; duct ¯ows will be emphasized in

this section. Air±water countercurrent ¯ow was studied
in a complementary theoretical and experimental study
[105C]; air±water ¯ow in a helically coiled pipe was
investigated in terms of the Lockhart±Martinelli par-

ameter [116C]. Heat transfer and friction data of R-22
and R-407C in a smooth tube for di�erent evaporation
pressures were presented [114C]. Phase distribution

and heat transfer measurements were carried out in an
n-heptane-water mixture ¯owing upward in a vertical
tube [110C]; condensation heat transfer in a smooth

horizontal tube with R-32 and R32/125 mixtures was
studied experimentally [104C]. Fluid-to-particle heat
transfer coe�cients were evaluated in an aseptic pro-

cessing holding tube simulator [102C]; dimensionless
correlations in the tube simulator were also explored

[101C]. A wave front perturbation method was
employed to examine two-phase ¯ow in a horizontal
channel [115C], and water-felspar ¯ow through a verti-

cal annuli was studied experimentally [113C]. The heat
transfer and pressure drop for air±water mixtures was
investigated experimentally in an iso¯ux vertical annu-

lus [108C]. Gas±particle thermal interactions were
examined in the presence of a surface [111C] and in
the Tokamak type reactor [107C]. Modeling of volca-

nic eruptions was done in a ®nite rigid channel, using
pressure driven ¯ow [112C]. Heat transfer during gas
hydrate formation in gas-liquid slug ¯ow was modeled
[106C]; the thermal performance of a phase-change

material during cooling was mathematically modeled
[109C]. A remote temperature sensor was used to
evaluate the convective heat transfer between a ¯uid

and particle in a continuous tube ¯ow [103C].

4.7. NonNewtonian duct ¯ow

The heat and mass transfer occurring during solidi®-
cation of waxy crude oils was studied [126C]. Shear-
rate dependent thermal conductive of certain nonNew-

tonian ¯uids leads to heat transfer enhancement; ana-
lytical results were presented [125C]. The viscoelastic
behavior of a ¯uid represented by the Criminale±Erick-

sen±Filbey constitutive equations was studied under
laminar conditions in a rectangular duct [122C]. A
®nite element method was used to investigate a highly
viscous nonNewtonian power-law ¯uid in a vertical

tube [124C]. The thermal convection for Herschel±
Bulkley ¯uids was studied numerically and experimen-
tally in an annular duct [123C]. The viscoelasticity of a

surfactant and its ability to a�ect drag and heat trans-
fer were examined [121C]. Aqueous carboxymethyl-
cellulose solutions were studied under laminar ¯ow

conditions in a square duct [120C]. The ¯uid mech-
anics and heat transfer of rheologically complex ¯uids
were investigated during a chaotic mixing process
[119C]. Power-law ¯uids inside ducts with catalytic

reactions were studied; Sherwood number results are
presented [118C]. It was shown that the Nusselt num-
ber distribution along the wall of an equilateral tri-

angular duct depended appreciably on the power law
index [117C]; the fully developed ¯ow of a power-law
¯uid was modeled using ®nite element analysis in a

rectangular duct [127C].

4.8. Miscellaneous duct ¯ow

A variety of studies could be characterized by their
unique geometry, ¯uid type or application; this diverse
group of papers will be summarized here. Turbulent
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scalar transport was modeled using second-moment
closure; various Prandtl numbers were investigated

[141C]. An experimental heat transfer study, done in a
metal hydride thermal energy conversion system, exam-
ined the interactions between two coupled reactors

[134C]. The challenges posed during the disposal of
heat-emitting waste was studied; argillaceous rocks
were used as a test medium [132C]. The annular gas

¯ow in a gas-lift well was presented through a mechan-
istic model [131C]. The cooling of aircraft skin made
necessary by high-powered electronics was investigated;

the analysis showed that skin cooling was a viable sol-
ution for heat dissipation from aircraft [129C]. An
analytical model was presented to capture the
dynamics of circulating ¯uid temperatures in drilling

operations [133C]. Transient experiments were con-
ducted to study the coupled natural convection in cir-
culation loops [130C]. The governing equations

describing the axial temperature variations in three-
channel split-¯ow heat exchangers were presented and
analyzed [135C]. The cool-down process of a demoun-

table liquid nitrogen transfer line was studied exper-
imentally; multilayer-insulated lines were addressed
[136C]. The transient behavior of He II heated along

the center of a pipe is treated numerically [138C].
Three turbulent models were compared for the appli-
cation to tilting-pad journal bearings [128C]. The delay
hot/cold water problem in ¯uid-pipe systems was

examined [140C]. Generalized rib-tube correlations are
used to optimize the roughness used for large evapor-
ators and condensers [139C]. Heat transfer enhance-

ment in an air compressor aftercooler was studied
experimentally; the mechanism of heat transfer aug-
mentation of a transversely corrugated tube was dis-

cussed [137C].

5. Flow with separated regions

Heat transfer in velocity ®elds dominated by ¯ow
separation are discussed in this section of the review.
The most common con®guration examined includes

the broad class of ¯ows past single cylinders or blu�
obstructions. The extension of a cylinder from a plane
wall was studied numerically; Nusselt number and
drag results were presented [24D]. The heat transfer

rates at the base of ®ve basic geometries (cylinder,
cube, diamond, pyramid and hemisphere) were com-
pared; the e�ect of a single roughness element was also

considered [6D]. The nonequilibrium air¯ow over a
hemisphere was computed to examine hypersonic ¯ow
conditions [12D]. The impact of a splitter plane on a

circular cylinder was studied under laminar ¯ow con-
ditions [18D]; heat transfer augmentation and Strouhal
number were investigated. Tandem arrangements of

blu� bodies were treated for prisms [7D] and rectangu-
lar cylinders [22D]. The optimal spacing between cylin-

ders in cross ¯ow was studied using complementary
analytical, numerical and experimental techniques
[21D]. A numerical investigation considered the mixed

convection past in-line cylinder bundles [13D]; results
compared well with existing literature. Flow past a
slender body at incidence and the associated heat

transfer were examined analytically [25D]. The incipi-
ent separation of a turbulent hypersonic boundary
layer was also studied at Mach 5 [3D]; nose-tip surface

heat transfer mechanisms were studied under hyperso-
nic ¯ow conditions [11D]. An improved kÿe model for
low-Reynolds number ¯ows was presented [20D] and
compared to existing experimental and DNS data. The

corner recirculating zone in a backward facing step
was studied numerically [14D]; the e�ect of transverse
curvature in a axisymmetric backward facing step was

also considered [16D]. Forward facing steps were
investigated under laminar natural convection ¯ow
[1D] and buoyancy opposed ¯ow [2D]. Analytical ex-

pressions for the laminar ¯ow in a circular step bearing
and the associated temperature distribution under
adiabatic conditions were presented [4D]. The unique

¯ow in a double-circuit vortex tube was studied exper-
imentally; applications of the work were also presented
[19D]. One paper dealt with the laminar heat and ¯uid
¯ow in a array of subchannels placed in a uniform

stream [5D]. A modeling study was found which exam-
ined the characteristics of heat and mass transfer ex-
perienced in a deep-frying slab, cylindrical and

spherical food products [8D]; a complementary study
considered the drying of solid objects [9D]. A fast false
implicit transient scheme was develop to predict the

two-dimensional steady-state solutions of buoyancy-
assisted laminar internal ¯ows [10D]; a backward
facing step was considered as a test geometry. Convec-
tive heat transfer from a cylinder experiencing surface

reactions was examined [17D]. The time-dependent
electromagnet heat transfer equations were solved to
study hyperthermic treatment [15D]. Step-wise pulse

current/heat through horizontally immersed thin wires
in helium II was also studied [23D].

6. Heat transfer in porous media

6.1. Property determinations

Several studies have reported attempts to better
characterize a porous medium undergoing heat and
mass transfer. The possibility of describing the struc-

tural characteristics of porous media via an infor-
mation entropy parameter has been developed [15DP].
The accurate description of the ¯ow ®eld in a porous
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medium was investigated via the use of a generalized
velocity to which all other transport velocities are

referenced [5DP] and via a domain decomposition
method [10DP]. A theory for ¯ow and heat transport
in deformable porous materials has been developed by

[7DP,8DP].
The in¯uence of the initial concentration of solute

and super-cooling on permeability of a porous medium

saturated with a partially solidi®ed aqueous solution
was determined via transient methods [12DP] The rela-
tive permeability of relations for vapor and liquids for

capillary porous media were deduced from a combi-
nation of numerical and experimental studies and
found to be based on the capillary pressure which can
be measured. [2DP]. The permeability and dispersiv-

ities of solute and heat for a period porous medium
were determined computationally using a theoretical
construct that accounts for the mobility ratio of gas

and liquid in unsaturated systems [1DP].
Thermal conductivity at high temperatures in porous

Ni/yttrium-stabilized zirconia cermets was determined

via ¯ash laser heating and application of the e�ective
medium theory [6DP]. The laser ¯ash method was also
used to very predictions of e�ective conductivity based

on a simulation of the microstructure [11DP]. Some
very fundamental experiments on transient heat trans-
fer indicated that neither a wave or pure di�usion
model can adequately explain the observed tempera-

ture and thermal penetration depths as a function of
time [14DP]. The dependency of thermal conductivity
on gas pressure and temperature was investigated in

materials with porosity greater than 30% [9DP]. A
procedure for determining the moisture di�usivity
using moisture concentration pro®les was developed

and quanti®ed [13DP]. A primary source of uncer-
tainty in reported values was inhomogeneity of the
matrix.
Modeling based on Luikov's heat, mass and pressure

transfer system in a capillary porous body was used to
estimate thermal and moisture conductivity [4DP]. The
e�ects of surface segregation kinetics and pore size on

e�ective thermal conductivity of porous ceramics was
modeled to predict the dependence of the thermal con-
ductivity on the material thermal history [3DP].

6.2. Fluidized beds

Basic and applied studies of ¯uidized beds, as a
special category of porous medium, continue at a

goodly rate. Applied studies this past year tend to
emphasize the performance and the of the bed within a
given range of operating parameters. More fundamen-

tal studies have investigated better characterization of
heat /mass transfer and hydrodynamics within the bed,
and scale up from laboratory experiments.

A two-¯uid model of bed hydrodynamics was devel-

oped for the dense phase system [23DP]. The hydro-

dynamics of fast ¯uidization has been extensively

reviewed, and a scaleable mechanistic model of heat

transfer for which the primary parameter is the bed

suspension density is found useful [18DP]. Conduc-

tivity and salt tracer measurements have been used to

provide local holdup and circulation patters of the

liquid and solid phases [26DP], and gamma-ray trans-

mission measurements were used to map the maximum

void fraction in a heat-generating system [33DP]. Ex-

periments have been run and compared with models of

pulsed beds used in drying and for heat transfer

[24DP], and a model for unsteady heat transfer in an

air cooled bed was developed [20DP]. The in¯uence of

wall roughness on bed hydrodynamics was studied ex-

perimentally [42DP]. An analytical model to determine

particle-to-surface temperature distributions using

available point wise average heat transfer measure-

ments was developed and validated [22DP]. The Zad-

bodsky correlation for heat transfer in a bubbling bed

has been modi®ed for a recirculating bed

[39DP,40DP]. Flow visualization of ¯owing particles

around imbedded tubes was conducted via X-ray video

®lms to determine the relation between particle beha-

vior and local heat-transfer coe�cients [37DP], and

measurements were presented for a heated probe in a

magneto¯uidized bed [35DP].

A simple model has been developed for bed heat

transfer dependent on input parameters, including

mass ¯ow of particles and ¯ue gases [25DP]. A modi-

®ed cluster renewal model has been developed for heat

transfer in pressurized beds [17DP]. Heat transfer to

several types of immersed surfaces was investigated ex-

perimentally [27DP±30DP,36DP]. Coupled heat and

mass transfer were experimentally investigated to

determine e�ects of bed height, gas velocity, initial

moisture content, and air temperature [21DP].

In several special studies, a hybrid neural model of

the dewatering process has been developed [41DP],

temperature and composition was predicted in a jetting

¯uid bed gassi®er [19DP], and a mechanical ¯uidized

vacuum furnace was developed [16DP]. Thermal

entrance e�ects for heat transfer in up-¯owing gas±

particle suspension was studied experimentally [38DP].

Fluid bed combustors were investigated to determine

the sintering tendency of ash produced [32DP] and fac-

tors a�ecting the devolatization of coal [34DP]. A sys-

tems model of the use of a ¯uid bed combustor in

concert with a gas turbine for repowering a steam

plant was studied to determine an optimal system con-

®guration [31DP].
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6.3. Free convection

The stability of conduction regime in saturated por-

ous layers was investigated for the case of a porous
layer lying under a ¯uid layers [56DP,54DP]. Stability
criteria have been developed for the translucent layer

with radiative heat transfer [62DP] and for layers in
which the body force alternates in direction [65DP].
All of these studies are variations of the more familiar

Rayleigh±Benard problem extended to porous layers.
Research on free convection in a fully saturated por-

ous media continues to be of interest from the funda-
mental perspective. A number of new problem types

have begun to appear in the literature, and most of the
them are driven by speci®c technological applications.
The general enclosure problem, including rectangular

cavities, annuli, and slots has been investigated for
steady state heat transfer under either the traditional
Darcy±Boussinesq approximations or formulations

that take into account nonlinear viscous e�ects [47DP±
51DP,60DP]. Enclosures of complex geometry have
also been considered in this context [59DP]. The
special case of an enclosure partly ®lled with a porous

medium and single phase ¯uid was investigated [61DP,
58DP]. Double di�usive convection in an enclosure has
been addressed, also numerically, via an extended

Darcy formulation. Transient convection in enclosures
driven by either time-dependent thermal boundary
conditions or vibrational excitation have also been

reported [43DP,55DP,57DP].
Heat transfer from surfaces and bodies imbedded in

a saturated porous medium has been studied for uni-

form and nonuniform thermal boundary conditions.
The ¯at plate problem has been addressed for steady
[63DP,64DP] and transient [45DP,46DP,52DP] thermal
boundary conditions. Special cases as variations of the

standard Darcy formulation included convection in
nonNewton ¯uids [67DP], on a slowly rotating
imbedded cylinder [68DP], and in a viscous, electrically

conducting and heat generating ¯uid [66DP]. An inter-
esting model for the enhancement of heat transfer
rates from an array of discrete heat sources was pre-

sented [53DP], and the e�ect of porous coating ma-
terials on heat transfer from a surface was investigated
experimentally [44DP].

6.4. Coupled heat and mass transfer

Fundamental studies of coupled heat and mass

transfer in porous media has occupied a signi®cant
fraction of the literature during the past year. For
many of the articles selected for this review, categoriz-

ation is not easy given the similarities that exist in the
formulation of the governing equations for a wide
range of applications. Further, modern computational

techniques and the power of modern computers have

helped blur the distinctions that have are usually made
among research activities in this ®eld. For example,
fundamental studies of drying processes and three-

phase transport in packed beds are beginning to take
on a commonality that hitherto has not been seen. In
addition to the traditional motivations to better under-

stand rate processes at a basic level in packed beds
and drying, transport in soil related to sub-surface

remediation, and the prediction of pollutant movement
have received attention.
The use of the concept of ``matrix replenishment'' in

relation to matrix di�usion has been introduced for
the complex problem of contaminant transport in non-

isothermal fractured porous media [70DP]. A special
apparatus has been developed to study time-dependent
heat and moisture transfer in ®brous insulation under

heat conduction with water vapor adsorption/de-
sorption, condensation and frosting [79DP]. Time-
dependent transport has been analyzed with porosity

changes due to dissolution of the solid matrix. [72DP].
Coupled heat and mass transfer has been studied with

an emphasis on the e�ect of matrix structure [81DP].
Convective burning as a precursor to detonation of
granular beds was studied experimentally for the

special case of low porosity beds; a primary ®nding
was that low velocity convection and compaction are
major factors for low porosity beds [69DP].

The e�ects of initial moisture distribution on transi-
ent heat ¯ow through wet porous material was with

variable thermophysical properties was studied exper-
imentally and numerically [86DP,87DP]. A boundary
layer analysis of combined heat and mass transfer by

natural convection from a concentrated source in a
saturated medium for both line and point sources was
reported [76DP]. An approximate solution for oscil-

latory ¯ow past a porous plate was presented for vari-
able suction and species transport [80DP].

An advanced formulation of multi-component,
multi-phase transport in capillary porous media has
been developed and applied to the simulation of the

transport of organic compounds in a subsurface en-
vironment [83DP,71DP]. This work has produced a

mathematical model of multi-component, multi-phase
transport that is economical in terms of computational
time. A mathematically interesting analysis of liquid,

vapor and gas ¯ow has been developed which allows
three values of saturation for a given ¯ux of mass,
energy and gas [85DP]. An exact solution of coupled

heat and mass transfer with moisture desorption under
temperature gradients in a vacuum environment was

also obtained [78DP].
For the problem of thermo-hydro-mechanical analy-

sis of coupled heat, water and gas ¯ow in a deformable

porous medium, a parallel Newton±Raphson algor-
ithm has been developed that is solved using net-

E.R.G. Eckert et al. / Int. J. Heat Mass Transfer 43 (2000) 1273±13711286



worked workstation-level computers [84DP], and a
hybrid ®nite di�erence and ®nite element solution has

been tested against experiments on partially saturated
soil and clays [75DP]. A two-dimensional ®nite element
solution was developed for heat and mass transfer in

irrigated soils and validated against ®eld measurements
[77DP]. The special case of cylindrical heat sources in
a saturated elastic saturated medium has been pre-

sented [82DP]. A microbial land®ll ecosystem has been
modeled as a porous medium to determine the trans-
port of heat and mass [73DP,74DP].

6.5. Drying processes

Studies of drying processes have expanded somewhat

to include both high and low heat ¯ux applications. A
comprehensive review of steam drying has been pre-
sented by [98DP].
One study focuses on modeling the drying and

eventual spalling of a concrete wall exposed to ®re
[88DP], and others presented a model for combined
drying and pyrolysis of hygroscopic material, such as

wood [93DP,91DP]. For the early stages of drying in
initially saturated concrete, it was found experimentally
that di�usion control sets in when the moisture content

decreased below 80% of initial saturation [95DP].
Convective drying has been studied via modeling

and experimentation. An empirical relation between

Nusselt and Sherwood numbers and the Reynolds and
Gukmann numbers developed for single, short porous
cylinders [96DP]. A one-dimensional analysis for tem-
perature and moisture variations was developed and

veri®ed for brick and mortar [94DP]. Convective dry-
ing in the presence of solar thermal radiation was
modeled and studied experimentally [92DP]. Two-

dimensional e�ects on the drying of plates in forced
convection were determined experimentally [90DP].
The drying of food materials has been approached

by a combination of experimental and theoretical stu-
dies. An experimentally validated model uses Luikov's
equations for capillary porous media and applies it to
constant pressure in during of hydrated composite

starch [99DP]. An experimental study of drying of
dense pasta suggests that di�usion dominates mass
transfer during the entire process [97DP]. A model of

drying due to micro-wave heating of granular hygro-
scopic solid was found to be sensitive to initial moist-
ure content, size and heat transfer coe�cient [89DP].

6.6. Multiphase ¯ow and heat transfer

An experimental study was reported for transient

regime heat transfer with liquid-vapor phase change in
forced ¯ow and compared to a model that predicts the
boundaries the two phase and vapor zones [107DP].

The in¯uence of sorption isotherms on the transport of
liquid and vapor was studied using a mass transfer

coe�cient and a speci®c evaporating surface [109DP].
Laboratory experiments were conducted on constant
pressure steam injection and transient condensing ¯ow

in an air-saturated medium; the propagation of the
steam front appears to be proportional to the square
root of time [100DP].

Liquid ®lm evaporation in heated gas ¯ow in a con-
tact apparatus was investigated experimentally, and
¯ooding criteria were reported [101DP]. Condensation

processes under random ¯uctuation of ambient tem-
peratures as conducted to develop a probability density
of the moisture content [103DP]. The dryout of a bed
of volumetrically heated particles cooled by a two-

phase ¯ow with evaporation was investigated to pre-
dict dryout limits for shallow and deep beds
[104DP,105DP].

Three-phase ¯ow in a catalytic reactor was modeled
for co-current ¯ow of liquid and gas to determine
liquid±solid and gas±liquid mass transfer coe�cients

[108DP]. Two major hydrodynamic regimes were ident-
i®ed for heat transfer in co-current gas±liquid ¯ow in a
packed bed reactor [106DP,102DP].

6.7. Forced/mixed convection in stationary beds

Forced convection Ð Most of the literature on
forced and mixed convection in stationary (packed)

beds has dealt with experimental and theoretical
studies that have broadened the knowledge base by
either extending or sharpening correlations for trans-

port transfer coe�cients. Several studies have also
been aimed at re®ning fully analytical and semi-empiri-
cal transport models. A comprehensive review of the
subject has been published [126DP]. A few studies

have focused on developing ¯ow, heat transfer and
¯ow stability [128DP,148DP,129DP], and ¯ow past an
imbedded object [143DP]. The analysis of the ¯ow of a

free surface and of two ¯uids in a porous channel was
also presented [118DP]. The special case of forced con-
vection from a porous block mounted from a heated

wall in laminar ¯ow was computed using a one-
equation model for energy and Van Driest's wall func-
tion [123DP].
The fundamental problem of predicting heat transfer

from a single phase ¯uid to a stationery packed
bed has been formulated as a system of equations
that pertain to the ¯uid and solid phases [113DP,

121DP,134DP,136DP,122DP]. Solution methods vary
but all of them bear a close relation to the problem of
predicting e�ective values of the transport coe�cients.

Other very fundamental studies include solutions for
heat transfer in a saturated porous channel, or slot,
with isothermal or iso¯ux boundaries [140DP,111DP,
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131DP,130DP] and characterization of heat transfer
and pressure loss [119DP]. Wall heat transfer coe�-

cients for a packed bed with tube-to-particle diameter
ratio of approximately two were computed for low
Reynolds number ¯ow and found to be in good agree-

ment with measurements [120DP]. An empirical corre-
lation for average Nusselt number in a pipe packed
with rigid spheres has been developed for the Darcy,

Forcheimer, and turbulent regimes of ¯ow [147DP].
The reduction of the wall e�ect on heat transfer in a
packed was demonstrated using a liner sheet compris-

ing convex hemispheres [141DP].
The e�ect of a variation of the structure of the por-

ous matrix on forced convection received special atten-
tion through both experimental and analytical/

numerical investigations [142DP,126DP,145DP,127DP,
137DP]. Nonsaturated media has also been treated nu-
merically [144DP]. A turbulence model for ¯ow

through porous media using a volume a averaging
technique, e�ective eddy di�usivity, and the 0-equation
model was developed [138DP].

The control and time-dependent behavior of
packed beds under periodic and pulsed ¯ow conditions
were also modeled [139DP,112DP]. The response

of a packed bed for a step input was determined
via a three-dimensional perturbation method [135DP].
The high Peclet number limit for heat and mass
transfer in a packed bed was also investigated

[132DP]. Stagnation point ¯ow of a chemically
reactive ¯uid in a catalytic bed was analyzed for
both transient and steady ¯ows [115DP]. The dilution

of a catalyst bead was studied via small-scale and
scaled-up laboratory units to improve heat transfer
and improve the overall e�ectiveness of the bed

[146DP].
Mixed convection Ð Studies of mixed convection

on stationary porous beds have begun to appear as
applications for high porosity materials have devel-

oped. Heat transfer from horizontal and vertical walls
is being investigated to determine the e�ects of
nonDarcian phenomena on heat transfer coe�cients

[133DP,124DP,116DP,117DP]. Heat transfer for non-
Newtonian ¯uids is also of interest [125DP]. Develop-
ing ¯ow and heat transfer in channels partially ®lled

with porous media has been solved using a hybrid
scheme for convection and di�usion [114DP].
Mixed convection heat transfer coe�cients on an

imbedded cylinder were computed for nonDarcy ¯ow
[110DP].

7. Experimental techniques and instrumentation

Many experimental results are cited in other cat-
egories of this review. The purpose of this section is to

identify papers that focus on new or improved exper-
imental measurement techniques or devices that are

useful in experimental studies of heat transfer. The
publications referenced here deal explicitly with some
aspect of heat transfer measurement or include a gen-

eral review of techniques that are applicable to heat
transfer measurements.

7.1. Heat ¯ux measurements

A review of methods applied to combustion was pre-
sented [1E]. The directional sensitivity of a wall-
mounted hot ®lm gauge with respect to yaw angle was

determined [3E]. A new type of thin foil radiometer
was described [4E] that measures the net radiative ¯ux
on a surface. The application of a water-cooled calor-
imeter to the measurements taken in a pool ®re were

described [6E]. Methods to measure heat transfer coef-
®cients were also presented [2E,5E].

7.2. Temperature measurements

Thin ®lm thermocouples developed for warm turbine
testing were discussed [14E]. Transient temperature
measurement sensors were described [16E,19E]. Liquid

crystals have been applied to transient temperature
measurements in hypersonic ¯ows [7E] and near cav-
ities on a ¯at plate [10E]. Accelerations up to 16,000 g

were found to have a negligible e�ect on liquid crystal
performance [20E]. Noncontact temperature techniques
and sensors include holographic interferometry [17E],
infrared radiometers [12E,13E], a scanning thermal

microscope [15E], and others [8E,9E]. Temperature
measurements have been made on various tissues
[11E,21E]. The temperature of ®ber tips used in scan-

ning microscopy were measured to understand the pro-
cess of tip heating [18E].

7.3. Velocity measurements

Studies of hot wire anemometers include a discus-
sion of the di�erent metrological problems encountered
in turbulent ¯ows [22E], the development of a pulse
heated anemometer [24E], the use of four-wire probes

in vorticity measurements [25E] and the angular re-
sponse of an x-wire probe at low velocities less than
1.4 m/s [26E]. Zhang et al. [27E] discuss three intermit-

tency measurement methods applied to transitional
boundary layer ¯ows. An impervious heated cylinder
has been used as a ground water velocimeter [23E].

7.4. Thermophysical property measurements

Various methods were developed to measure proper-
ties in solids including thermal conductivity [31E], ther-
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mal conductivity and heat capacity [28E], and thermal
di�usivity [29E]. A transient hot-wire method was

described that can determine thermal conductivity and
thermal di�usivity of liquid simultaneously [30E].

7.5. Miscellaneous methods

The use of two-point laser Rayleigh spectroscopy to
determine space and time-resolved structures of turbu-
lent di�usion ¯ames was discussed [33E]. Reviews of

low cost sensors [34E] and magnetic resonance imaging
applications [32E] were presented.

8. Natural convection Ð internal ¯ows

Natural, or free convection, continues to evolve as a
subject for both basic and applied research. The funda-

mental literature this year has shown growth in the
direction of systems in which buoyancy exists in con-
cert with external forcing conditions and/or nonuni-

form thermal boundary conditions. However, very
fundamental studies of heat transfer in layers, cavities,
and channels yet dominate published research. There is

a growing interest in describing buoyancy dominated
¯ows in systems with forcing conditions applied either
at the boundary or volumetrically. The development of

new industrial processes, such as in materials manufac-
ture, and in space processing motivate this research.
The literature on heat transfer phenomena associ-

ated with ®res also continues to grow. Increasingly,

studies of ®re and its related transport phenomena are
aimed at quantifying mechanisms of inanition and
spread in both pools and enclosed spaces. The general

directions of the research on ®res and related natural
convective phenomena has produced a literature that
can be conveniently categorized. Major areas of

research focus are: (1) Modeling and experimentation
to determine and describe transport phenomena; (2)
experimentation and large-scale testing to support

model development; (3) validation of production codes
and their internal transport models; and (4) veri®cation
of production codes.

8.1. Plane layers

Rayleigh±Benard convection was investigated nu-
merically and experimentally for a system comprising
two immiscible liquids for a range of buoyancy ratios

and thermal boundary conditions [6F,4F,2F]. Funda-
mental aspects of environmental ¯ows were also inves-
tigated for high Prandtl number ¯uids, including the

dynamics of thermal release and the e�ects of tempera-
ture-dependent viscosity [5F,7F]. An interesting exper-
imental study of steady state heat transfer in air layers

heated from above reports heat transfer relations and
¯ow ®eld information for two aspect ratios and incli-

nations [1F]. A fundamental experimental study of
penetrative ¯ow due in a stable double layer system
due to an immersed isothermal wall shows that pen-

etrative ¯ows result from the interaction of oppositely
directed ¯ows that meet and mix at the interface [3F].

8.2. Cavities

While most studies reported for cavities of moderate
aspect ratios were numerical in nature, some important
experiments were published. Nusselt numbers at very

high Rayleigh number were measured by Chavanne et
al. [12F], with the Nu-vs.-Ra relation showing a depar-
ture from the 2/7-ths power law above Ra0 1E+10.

Two detailed studies of the structure and evolution of
transient convection via ¯ow visualization in square
and rectangular cavities with heating from the side

walls were reported [14F,19F]. The structure of the
two-dimensional ¯ow ®elds for various aspect ratios
and heating from either the side walls or the bottom
yet draws attention, with computational schemes and

details of the ¯ow being simultaneous foci of reported
studies [26F,16F,25F,8F]. The three-dimensional ¯ow
in a cubical cavity heated from below was computed

[19F] to reveal the existence of four stable structures
for Ra < 1E+04, and ¯ow transitions for two- and
three-dimensional perturbations were also determined

numerically [13F,15F]. For a cylindrical cavity [17F], a
series of roll and open roll ¯ows dominate for Ray-
leigh numbers moderately elevated above the critical

value for the onset of motion.
Cavities with complex thermal boundary conditions

are also receiving systematic treatment. Convection
driven by partically heated boundaries reveals ¯ow and

temperature ®elds with oscillatory and periodic beha-
vior [20F,21F,27F]. Experimental data for temperature
and ¯ow ®elds in a long box driven by nonuniform

heating and cooling on the horizontal boundaries were
reported [24F] Some interesting results for inclined
cavities were also reported for both application to

solar energy engineering and end-driven ¯ows
[18F,23F].
Some interest has also been shown in the special

case where buoyancy forces are produced via volu-

metric heat release within the convecting ¯uid. Two ex-
perimental studies of connection with nuclear rector
technology and post-accident heat removal have been

reported for a volumetrically heated segment of a
sphere that is cooled externally from the curved surface
[9F,10F]. On a more fundamental level, the e�ects of a

sinusoidally varying heat source in a square cavity
were investigated numerically [11F]. The stability of a
uniformly heated ¯uid layer continued to receive some
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attention but added complexity due to convective and
other types of boundary conditions [22F].

8.3. Conjugate problems

Natural convection in which the system boundaries
couple thermally to the ¯uid continue to receive atten-
tion, though not the extent that one would expect.
Conjugate convection between two ¯uids separated by

a horizontal wall was investigated both numerically
and analytically [31F]; the related problem for channel
¯ows with discrete heating was reported by [28F].

Buoyant conjugate heat transfer in horizontal planar
themosyphons was thoroughly analyzed by [29F,30F].

8.4. Vertical channels and slots

Fundamental work on vertical channels and slots
this past included several studies that provide measure-

ments of velocity and temperature ®elds for important
engineering applications and for validation bench-
marks for theoretical studies. Such experiments have

been reported for a tall cavity with air as the working
¯uid [32F]. A mass transfer analog has also been inves-
tigated [39F].

For very high Prandtl number ¯uids in a di�eren-
tially heated slot with aspect ratio 15, [35F,36F] report
temperature and velocity ®elds in good agreement with
recent experimental results. With air as the working

¯uid in either a slot or channel, several ®nite di�erence
studies report velocity and temperature ®elds
[33F,37F,38F]. For a slot with discrete heating, a fully

analytical solution for the velocity and temperature
®elds is able to reveal the energy content of the domi-
nate modes of ¯ow [34F].

8.5. Annular ¯ows

Vertical and horizontal annuli were the objects of

several studies. Numerical work was reported for con-
stant ¯ux heating on the inner wall for a tall but ®nite
annulus [46F] and for the horizontal annulus with

water at the working ¯uid [45F]. Systems with
eccentric cylinders and a noncircular outer wall were
also considered via numerical analysis [44F,41F]. Ex-
perimental and numerical results for heat transfer were

presented for a vertical annual with an adiabatic upper
boundary [43F]. An interesting analytical study of ¯ow
stability in a tall vertical annulus was reported for a

range of Prandtl numbers and disturbance modes
[40F]. A numerical investigation of convection between
concentric and vertically eccentric spheres with mixed

boundary conditions showed that heat transfer coef-
®cients and ¯ow ®elds mainly depend on the Raleigh
number and the eccentricity [42F].

8.6. Complex geometries

A variety of applications has motivated experimental

and numerical work on buoyancy driven ¯ow in com-
plex enclosures. A combined numerical and experimen-
tal modeling technique has been suggested for

imperfectly mixed ¯uids in a ventilated space [49F].
Flow patterns and temperature ®elds in partitioned
enclosures were investigated for very large Rayleigh

numbers using three- and four-equation models for
turbulent transport [51F]. Cavity ¯ows driven by
heated parallel plates within the enclosures were nu-
merically determined [52F]. Experiments and analysis

for a horizontal open annulus were reported [50F], and
experiments were conducted on horizontal enclosed
rod bundle [47F]. A parametric study for ¯ow and

heat transfer in L-shaped corners with asymmetric
heating was reported [48F]. The enclosure with con-
ducting multiple partitions received attention, and

some progress was made toward a generalized rep-
resentation of the problem [54F]. Buoyancy driven
¯ow and heat transfer from helicoidal pipes was inves-
tigated experimentally, with the key ®nding being that

local and average Nusselt numbers for the horizontal
coil being larger than those for the vertical coil [55F].
An experimental and numerical investigation of

coupled convection and di�usion in a U-tube reactor
was able to accurately predict the mixing of reactants
prior to the onset of global convection [53F]

8.7. Transient systems

An interesting feature of this year's literature has
been the appearance of a variety of studies on buoy-
ancy a�ected ¯ows wherein buoyant forces are coupled

to external forcing conditions. Such forcing conditions
may be transients imposed at the boundaries of the
system, vibrational e�ects, or oscillatory bulk ¯ows. A

primary category of research in this broad category
includes experimental and numerical studies for cav-
ities with time-varying thermal boundary conditions

[57F,61F]. Instability in a di�erentially heated ¯at,
inclined layer subject to high frequency vibration was
studied analytical and numerically for small amplitude,
two-dimensional disturbances for all combinations of

temperature gradient and axis of vibration [58F]. Res-
onance in thermo-vibrational convection was observed
via numerical studies [59F]. Convection with physically

moving boundaries, so called lid-driven ¯ows, was stu-
died both experimentally and numerically [56F,62F].
As ¯ow in this category leads easily to mixed convec-

tive situations, a related study is that in which oscil-
latory pressure gradients exist in a channel with
bottom wall heating [60F].
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8.8. Plumes and thermal discharges

Research on buoyant plumes of several types has

been motivated both by technological and environmen-
tal problems. An experimental and theoretical study of
a wall plume arising from a thermal source on an

inclined surface has been reported along with a corre-
lation for Nusselt number over a wide range of Prandtl
numbers and angles of incline [64F]. On a larger scale,

studies of simple heat islands, which are a special class
of the urban heat island, were performed using small
scale laboratory models [65F]. Some new data on self-
preserving plumes were also reported [63F]. A veri®ca-

tion of dilution in environmental thermal discharges
using the US EPA's CORMIX2 and UM production
codes was also reported [66F]. The two codes demon-

strated some di�erence in overall predictions for
selected case studies.

8.9. Double di�usive and thermocapillary convection

Double di�usive convection in enclosures continues
to be investigated numerically and analytically. Var-

ious studies were reported that continue to describe
heat transfer and ¯ow structure [72F,70F]. General
mass transfer relations are also proposed, and the in-

¯uence of the interactions between density di�erences
and thermal gradients are elucidated [67F,69F].
Thermocapillary e�ects on natural convection had

drawn attention via both experimental and numerical
studies. Oscillatory ¯ows in cylindrical systems [71F]
were investigated experimentally for both heat transfer

and ¯ow ®eld. Transient ¯ows in multi-¯uid layers
[74F] were investigated numerically, and oscillatory
¯ows were found for large Rayleigh and Marangoni
numbers. A numerical study of an evaporating axisym-

metric droplet predicts that surface tension strengthens
internal circulation and thereby shortens overall evap-
oration time [73F]. For a system comprising two super-

posed ¯uid layers under reduced gravity,
thermocapillary forces are seen to play a role in the
heat transport process under micro-gravity conditions

[68F].

8.10. Fires

The validation and use of ¯uid dynamics and
specialized heat transfer (CFD/CHT) codes have been
the focus of several papers on tunnel and room ®res

[98F,99F,84F,82F,76F]. Separate heat transfer e�ects,
e.g., radiative heat transfer, convective heat transfer,
etc., and the propagation of the ®re were of greatest

concern. Zonal models of ®res in rooms and buildings
continue to occupy a goodly fraction of the work
underway to accurately exercise production codes.

CFD/CHT commercial codes were also used to assess
the e�ectiveness of extinguishment of enclosed gas ®res

by a water spray [88F] Fundamental model develop-
ment has been directed at dehydration and stress
analysis [77F], coupled heat and mass transfer in

woodland ®res [86F], wood combustion [87F], and
heat transfer in composite wall structures [97F]. All of
this work involves a goodly number of approximations

and generally the solution of the coupled equations for
heat and mass transfer.
More fundamental model development work has

also been done this past year. Typical studies are those
involved in the design of steel-framed walls [85F],
developing constitutive relations for steel at high tem-
perature [93F], and overall thermo-structural analysis

[78F].
Work on ®re dynamics involved both numerical and

experimental work. Poreh and Morgan [90F] have

developed a homogeneous power law to describe the
vertical variation of mass ¯ux in the near ®eld of tur-
bulent ¯ames and plumes. The ignition of a ¯ammable

pool was idealized as liquid layer with a focused heat
¯ux on the upper surface; the problem is mathemat-
ically modeled as a nonlinear conduction problem

[81F]. Buoyant ¯ows related to ®res in enclosed and
partially enclosed spaces were investigated numerically
for both laminar and turbulent ¯ows [75F,91F,100F].
Large scale ®res and their assessment were carried

out on ignition, spread, and interactions with struc-
tures. Flame spread in composite materials were
reported [89F,83F,95F], and the e�ects of ignition

sources on heat release from upholstered furniture
were measured [94F]. Assessment of large scales tests
addressed strati®cation in fuel tanks [79F], ®re resist-

ance and endurance parameters [96F,80F]. A critical
assessment was presented by [92F] on the use of the
cone calorimeter in the analysis of ®res.

9. Natural convection Ð external ¯ows

9.1. Vertical plate

Studies on buoyancy driven convection heat transfer
from a vertical plate include the in¯uence of a trans-
verse magnetic ®eld under microgravity conditions

[9FF], transient mass transfer in a steady laminar ¯ow
[10FF] and unsteady heat transfer over a continuous
moving vertical sheet at constant surface temperature

and constant surface heat ¯ux boundary conditions
[7FF]. Studies of convection of a nonNewtonian ¯uid
on a wavy vertical plate has been analyzed including

the in¯uence of a magnetic ®eld [1FF,16FF]. Conju-
gate natural convection from a vertical plate has been
analyzed using a ®nite-di�erence scheme [11FF] and
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using numerical and asymptotic solutions [15FF].
Other studies of natural convection on a vertical plate

include the use of an algebraic ¯ux model to study tur-
bulent heat transport [2FF] and a numerical model for
studying heat transport with a phase change material

[3FF]. Combined mass and heat transfer with multi
component electrochemical systems [5FF] and with
double di�usive convection [12FF] have been analyzed.

A special case concerns convection from a draining
®lm with thermocapillary instabilities [6FF]. Laser
holographic interferometry was used to study convec-

tion from vertical rectangular ®ns [8FF] while a nu-
merical solution established optimum ®n spacing for
heat sinks [13FF]. Protruding blocks on vertical sur-
faces have been studied experimentally [14FF] and nu-

merically [4FF] to simulate heat ¯ow from computer
chips.

9.2. Inclined and horizontal surfaces

A boundary layer analysis provides heat transfer
results for convection of a micropolar ¯uid on a hori-

zontal plate [18FF]. Boundary layer ¯ow with a vari-
able viscosity ¯uid and free surfaces has been
described [17FF]. An asymptotic analysis predicts ther-

mal ignition of combustion gases [19FF] ¯owing along
an inclined surface.

9.3. Spheres and cylinders

Several studies examine convection from spherical
systems. Steady [23FF] and transient [24FF] laminar

convection from spheres has been studied over a large
range of Rayleigh and Prandtl numbers; potential
¯ow, separation and a recirculation vortex are dis-

cussed. Cooling of spherically shaped melons was stu-
died experimentally under time varying conditions
[21FF]. A horizontal surface near a horizontal cylinder
can change the convection ¯ow pattern [25FF]. Exper-

iments and analysis provide the e�ect of shape of hori-
zontal elliptical cylinders on the mean heat transfer
[20FF]. Numerical studies show the increase in heat

transfer from a cylinder due to the presence of multiple
low conductivity longitudinal ba�es [22FF].

9.4. Mixed convection

A number of studies consider heat transfer with
both buoyancy-driven and forced ¯ows. A model pro-

vides good agreement with the experimental data for a
vertical plate in which the forced and natural convec-
tion ¯ows are either in the same or opposing directions

[28FF] while a related study [32FF] converts the model
to similar ¯ows on circular discs. Experiments on a the
face of an eight storey building provide data for mixed

convection heat transfer to apply in the design of
multi-storey building structures [29FF]. Similarity sol-

utions are provided for mixed convection on a continu-
ous ¯at plate with a ¯uid whose viscosity is dependent
on temperature [27FF]. Other mixed convection studies

include analyses for ¯ow of a micropolar ¯uid in the
axisymmetric stagnation region of a vertical cylinder
[26FF,30FF] and for ¯ow around a heated cylinder

mounted between parallel plates [31FF].

9.5. Miscellaneous

Use of triangular elements in a ®nite element analy-
sis provides rapid convergence of the numerical sol-
ution for several di�erent geometries over a range of

laminar ¯ow Rayleigh numbers [38FF]. A boundary el-
ement method provides two-dimensional time-varying
heat transfer data for oscillatory natural convection
[39FF]. A model [33FF] predicts the in¯uence of natu-

ral convection on measurement of the di�usion coef-
®cient in concentrated liquid alloys. Convection studies
include simulation models for the growth of single

crystals of cadmium telluride [40FF]. Under micro-
gravity conditions the in¯uence of thermo-acoustic
convection [41FF] and a model for dendritic growth

[37FF] have been discussed. Natural convection e�ects
on the temperature distribution in gravel embankments
over summer and winter seasons [35FF], the heat

transfer and ¯ow in models for storage of reactor fuel
assemblies [36FF], and the ¯ow of aerosols released in
postulated nuclear accidents [34FF] have been
described.

10. Rotating surfaces

10.1. Rotating disks

Two numerical studies were performed on the ¯ow
between rotating disks. In the ®rst [1G] the two disks
rotate with di�erent time dependent velocities. In the
second [3G], mixed convection is studied with co-rotat-

ing and counter rotating disks with and without a
shroud. The ¯uctuation of rotation power was
measured for two counter rotating disks with and

without a shroud [2G]. The sliding interface between a
stationary pin and a singe disk was studied theoreti-
cally [5G]. A rotating cavity with axial through¯ow

was used to model a compressor drum cavity [4G].

10.2. Rotating channels

Several numerical [15G,12G,8G,6G] and experimen-
tal [14G] papers describe ¯ow and heat transfer in
channels rotating about an axis perpendicular to the
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channel axis. A description of a new research facility
was also given [18G]. Additional studies considered

curved channels [10G,20G] and channels with ribs
[9G,19G]. Experiments were performed for ¯ow in a
pipe rotating about its axis [11G] and numerical sol-

utions were obtained for ¯ow in rectangular and ellip-
tical ducts rotating about a parallel axis [16G]. The
performance of an annular heat exchanger with the

inner cylinder rotating [21G], rotating annuli [7G], and
the ¯ow in the annulus around a rotating cylinder
[13G] were reported. Heat transfer to liquid helium in

a high speed rotating ®eld was investigated [17G].

10.3. Enclosures

Geometries considered in rotating enclosure ¯ows
include a rotating cylinder [29G] and an annulus
[24G]. Studies of rotating liquid layers include develop-
ment of criteria for the onset of Benard±Marangoni

convection [28G] and the transition to turbulence for
Rayleigh±Benard convection [25G]. Numerical and ex-
perimental studies were made on convection in a di�er-

entially heated cubic cavity rotating about its center
[26G,27G]. Theoretical solutions have been obtained
for ¯ow in a spherical annulus [22G] and from a rotat-

ing cylinder contained in a rectangular enclosure
[23G].

10.4. Cylinders, spheres, bodies of revolution

Heat transfer by forced [31G] and mixed [33G] con-
vection from rotating cylinders has been predicted.

Forced [34G] and mixed [30G] convection from rotat-
ing spheres has also been investigated. The e�ect of
aspect ratio was determined for heat transfer from a
rotating cup [32G].

10.5. Miscellaneous

A theoretical investigation was performed on the
transient dynamics and heating of a droplet in a gas
¯ow [37G,38G]. The e�ects of rotation on ice for-
mation [35G] and on spacecraft boom deformation

[36G] were studied.

11. Combined heat and mass transfer

The present section on combined heat and mass
transfer covers a number of important cooling mech-

anisms. These include transpiration cooling, ablation,
®lm cooling, jet impingement heat transfer, spray and
mist cooling and drying systems.

11.1. Transpiration and ablation

A transpiration coolant passes through a porous sur-

face to protect the surface from a hot gas stream ¯ow-
ing over it, while ablation occurs when a high heat ¯ux
to a solid surface produces loss of material by a num-

ber of processes including sublimation and chemical
decomposition with the intent of absorbing the heat
transferred from a high velocity and temperature ¯ow

to prevent damage of the structural surface underneath
the ablating material. Two dimensional axisymmetric
ablation problems have been analyzed using an
unstructured grid to include the e�ective change of sur-

face shape [3H]. Change of shape of an ablating solid
and the transient temperature distribution inside it has
been analyzed with a three-dimensional conduction

model [4H]. The e�ect of mechanical erosion on an
ablating carbon-base material has been examined [5H].
The ablation of a cellulosic cylinder degrading from

high pressure contact against a hot, spinning disc has
been analyzed [2H]. Transpiration cooling studies
include an analytical model for air injection from a
hemicylinder [6H], transpiration with turbulent ¯ow

over a two dimensional contoured nozzle [1H] and the
use of a perforated plate with di�erent hole sizes for
the transpiring holes [7H].

11.2. Film cooling

With ®lm cooling, ¯uid is injected at discrete lo-
cations along the surface into the boundary layer to

prevent overheating of a wall from exposure to a high
temperature ¯uid. Film cooling from a row of holes
along a turbine blade has been studied in a cascade at
di�erent free stream turbulence levels [10H] while a

three-dimensional code has been used to study the
e�ect of spanwise pitch of shower-head holes at the
leading edge of a turbine blade [8H]. Film cooling per-

formance for injection through discrete holes in the
endwall of a turbine blade is investigated [9H]. The
e�ect of bulk ¯ow pulsations on the injection [15H]

and the ®lm cooling performance [16H] have been stu-
died with single-row ®lm cooling along a surface. Film
cooling in a duct has been examined for both subsonic
and supersonic ¯ow [13H]. Another analysis considers

di�erent angles of ®lm cooling holes taking their ¯ow
from a duct at di�erent velocity ratios [14H]. Film
cooling with a supersonic ¯ow at Mach 2.35 has been

examined experimentally [12H]. Other ®lm cooling stu-
dies include applications to protect electronic modules
[11H] and injection into a ¯ow over a rearward facing

step [17H]. A computation shows some signi®cant
physical in¯uences in a ®lm-cooled high-speed nozzle
¯ow [18H].
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11.3. Submerged jets

The thin boundary layer in the stagnation region of

an impinging jet provides high localized heat transfer

while an array of jets can cool larger surfaces. Sub-

merged jets are jets in which the ¯uid in the jet is simi-

lar to the ¯uid in the surroundings. Studies on heat

transfer of impinging jets include measurements with

di�erential thermocouple heat ¯ux sensors [45H], the

in¯uence of the turbulent statistics in the stagnation

region on heat transfer [40H], and the e�ect of shear

layer dynamics on local and average heat transfer

[38H]. The instabilities in a supersonic impinging jet

[26H] and the e�ect of turbulence on heat transfer in

stagnation ¯ow [19H] have been reported. Jet impinge-

ment has been used to dry a moist, porous solid [25H]

and to heat a phase change material [21H]. Jets

impinging on a surface in a con®ned geometry have

been studied including the in¯uence of nozzle geometry

[22H], and turbulence intensity [36H]. A k±e turbu-

lence model has been used to predict heat transfer to a

fully developed turbulent axisymmetric jet within a

semi-con®ned space [20H]. Liquid crystals have been

used to study the heat transfer from a pair of imping-

ing air jets [46H] while a numerical investigation pro-

vides information on heat transfer with rows of

impinging jets [32H]. The e�ect of ¯uctuating velocity

on impingement heat transfer with an excited circular

jet [37H] and a self-oscillating jet [41H] have been

reported. Use of a self-oscillating jet has also been

examined for drying applications [43H]. Flow and heat

transfer has been studied from an impinging torch

using an interferometer and stroboscopic photography

[29H]. Jet impingement has been used to prevent over-

heating of cutting tools in manufacturing [33H, 34H]

and for continuous annealing in steel strip manufactur-

ing [39H]. Particle image velocimetry and laser-induced

¯uorescence have been used to examine the ¯ow and

heat transfer of an excited plane impinging jet [42H]

while supersonic impinging jets have been examined to

show the in¯uence of shock±vortex interaction [24H].

Laminar wall jets on plane and cylindrical surfaces

have been studied, including the in¯uence of suction

and blowing on heat transfer [44H]. Experiments on a

plane wall jet include the use of a thermochromic

liquid crystal to measure temperature distribution

[30H] and hot-wire anemometry to study the ¯ow

characteristics [31H]. A two dimensional analysis has

extended the solution for a wall jet to show potential

instabilities [35H]. Experiments have been reported on

interaction of two turbulent curved wall jets [27H].

Other studies have been reported on the analysis of

mass transfer to a wall jet with chemical reaction at

the ¯uid±solid interface of [23H] and heat transfer to a

buoyant ceiling jet [28H].

11.4. Liquid jets and sprays

Individual liquid jets and sprays from liquid jets are

used in a variety of cooling applications. Studies on
heat transfer to liquid impinging jets include the in¯u-
ence of nozzle diameter on local heat transfer [47H]

and the cooling of an array of heated strips from an
impinging ¯uorinert coolant [49H]. Numerical analysis
is compared to an approximate solution for determin-

ing the heat transfer from a two-dimensional vertical
liquid jet against a hot, horizontal plate [50H]. Appli-
cations of spray cooling to steel production [52H] and
desalination systems [51H] have been reported. An air/

liquid mist created in jet atomizer has been used to
cool heated surfaces [48H].

11.5. Drying

Combined heat and mass transfer under drying con-

ditions has been examined in a number of basic and
applied systems. Models predict heating and drying
with internal energy dissipation such as in microwave
heating [54H], direct contact rotary drying [62H], par-

ticulate solid drying with a neural network model
[56H] and drying of droplets containing dissolved bio-
mass [59H]. Experiments on drying systems include the

use of air and superheated steam as drying media
[63H] and laboratory simulations of impulse drying
with ceramic and steel plates [61H]. A number of ap-

plications to drying food have been modeled. These
include sliding bed dryers for grain [60H], a model for
drying wheat in a ®xed bed [57H,58H], and drying sys-

tems for di�erent foods [53H]. An analysis considers
the drying potential of humid air [64H]. An optimiz-
ation system for timber drying has been presented
[55H].

11.6. Miscellaneous

Combined heat and mass transfer in wavy ¯owing
®lms has been analyzed [77H] and studied in exper-
imental systems [79H]. Studies of heat and mass trans-

fer in tubes include evaporation e�ects of binary
mixtures of refrigerants [69H] and mixtures of lubricat-
ing oil and refrigerants [68H]. Investigations describe
heat and mass transfer with saline water ¯ow in a cav-

ity [76H] and the performance of a spined-tube absor-
ber [71H]. Analyses have been performed for heat and
mass transfer during nonisothermal gas absorption in

a two-phase gas±liquid mixture [73H], for transport
through inert liquids [72H], and for dehumidi®cation
of the air in lithium chloride solutions in a packed col-

umn [70H]. Combined heat and mass transfers through
solid matrixes has been examined for a three layer
building envelope and a single and multi-layer fabric
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systems [67H]. Heat and mass transfer analyses have
considered ¯ows in soils [78H], clay bu�ers [80H] and

the adsorption of water on zeolite [74H]. Other studies
include processes involving bulk refrigeration of fruits
and vegetables [66H], modeling of single drops in

liquid-liquid mixtures [75H] and hydrogen and thermal
transport in laser beam welding [65H].

12. Change of phase Ð boiling

Thermal transport phenomena associated with
liquid-to-vapor phase change are addressed in the pub-

lications reviewed in this section and classi®ed into
four major categories: droplet and ®lm evaporation (19
papers), bubble characteristics and boiling incipience

(17 papers), pool boiling (40) and ¯ow boiling (47). In
addition to these papers, dealing with evaporative and
ebullient heat transfer, the interested reader will ®nd

these phenomena addressed in some of the papers
included in the following sections: change of phase nÄ
condensation (JJ), heat transfer applications nÄ heat
pipes and heat exchangers (Q ), and heat transfer appli-

cations nÄ general (S).

12.1. Droplets and ®lm evaporation

The 1996 archival literature presents several funda-
mental studies of evaporation from a single droplet,

including the application of perturbation theory to the
prediction of evaporation and combustion rates [6J],
the modeling of ¯ash evaporation from a droplet

exposed to a high-speed air stream [7J], and the use of
holographic techniques to obtain the radial distri-
bution of evaporated di�using vapor [18J]. The evap-
oration rates and onset of instability in the EHD-

enhancement of droplet evaporation are discussed in
[16J,17J] respectively.
The ¯uid mechanics of droplet impaction on ¯at

walls underpins models of diesel combustion and spray
cooling and is explored in [4J,15J] Ð describing the in-
corporation of droplet impingement models into nu-

merical codes for combustion in an internal
combustion engine, [3J] Ð addressing an anomalous
region in the boiling curve for jet mist cooling, [11J] Ð
focusing on the e�ect of droplet sensible heat on the

cooling rates, [12J] Ð comparing computer predictions
with anemometry data for droplet velocity and size in
the wall spray, [5J] Ð comparing theoretical predic-

tions with experimental data for spreading ratios and
times of impinging droplets, [2J] Ð describing the in-
¯uence of large surface roughness on droplet impact

and spreading, and [14J] Ð presenting photographic
data and fast response thermocouple measurements
during droplet impact in low gravity.

Recent studies of evaporating liquid ®lms have
addressed important aspects encountered in actual en-

gineering applications. The microscopic details of ¯uid
¯ow and heat transfer near the contact line of a curved
evaporating liquid ®lm are, thus, examined in [8J],

nonequilibrium evaporation of a heated ®lm in micro-
gravity in [9J], the e�ect of longitudinal ®ns on evapor-
ation of falling ®lms on horizontal tubes in [13J] as

well as the enhancement associated with the use of
thin glass rods to disturb the liquid ®lm in [19J], and
the changes caused by the presence of lubricant on the

evaporative heat transfer performance of refrigerants
R-134a and R-22 in [10J]. A procedure for selecting
the optimum number of e�ects for evaporators used in
chemical process plants is proposed in [1J].

12.2. Bubble characteristics and boiling incipience

[20J] uses a variational form of mechanical energy

conservation, in both the liquid and the vapor, to de-
rive the characteristics of a bubble growing at a
nucleation site on a horizontal wall. [21J] develops a
nonequilibrium relaxation model for one-dimensional

¯ashing liquid ¯ow. The e�ects of microgravity on the
growth rates of hemispherical bubbles are studied and
theoretically-bounded in [24J], the e�ects of elastic vis-

cosity and di�usion resistance on the growth of vapor
bubbles in a superheated polymer solution are the sub-
ject of [32J,25J]. In [31J] the growth of vapor bubbles

within a porous medium was studied both experimen-
tally and theoretically. A new dynamic instability, as-
sociated with the onset of boiling in a single-channel,

high-pressure up¯ow was described in [35J].
Digitally-enhanced measurement techniques were

used in several studies to examine the characteristics of
bubbles encountered in vertical bubbly ¯ow, including

[34J] Ð in which an electroresistivity probe was used
to obtain phase-resolved temperatures, as well as
volume fraction, bubble frequency, and bubble velocity

for air±water and air±multi¯uor ¯ows [36J] Ð in
which high-speed photography and digital image pro-
cessing techniques were applied to the determination of

bubble properties encountered in subcooled ¯ow boil-
ing, and [29J] Ð in which decentralized processing of
multiple ®ber-optic sensors was used to map the local
void fraction and bubble properties for an air±water

¯ow.
While the homogeneous nucleation kinetics near a

small evaporating drop were investigated in [23J], [33J]

describes the results of experiments involving laser-
induced bubble formation in liquid nitrogen and [22J]
the results for the onset of nucleate boiling and of

critical heat ¯ux for liquid nitrogen on substrates of
di�ering roughness. The transition to boiling, as well
as other transient phenomena, of He II in a vertical
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channel [28J], of liquid 3He and mixtures of 3He and
4He below 1 K [27J], and of liquid nitrogen and

helium under rapidly increasing heat ¯uxes [30J] are
also described. [26J] present evidence of suppression of
the incipience hysteresis in highly-wetting liquids,

through the use of micrographite ®ber nucleation acti-
vators.

12.3. Pool boiling

Fundamental studies of pool boiling heat transfer,
published during 1996, described the development of a
new additive model for bubble-induced heat transfer

[39J], experimental results for nucleate boiling of
binary mixtures [51J,52J,59J], experimental data for
pool boiling in microgravity [66J], boiling of HeII

under steady and transient conditions [69J], and the in-
¯uence of surface properties on transient pool boiling
[46J]. Nontraditional experimental techniques were

employed by several investigators to elucidate pool
boiling behavior, including the use of temperature con-
trolled surfaces to obtain precise boiling data [41J,
47J], use of liquid crystals thermography to map the

variations in wall superheat [60J], and laser-Doppler
anemometry to determine the contribution of each of
four heat transfer mechanisms to ebullient thermal

transport [38J].
The in¯uence of heater geometry on pool boiling

was examined in [48J] Ð which provides a review of

the literature dealing with pool boiling from inclined
and downward-facing smooth plates, in [55J] Ð which
discusses the heat transfer mechanism for boiling on

the outside of horizontal tube bundles, in [44J] Ð
which presents the results for boiling on various com-
binations of tube diameters, surface roughness, and
tube orientation, in [56J] Ð wherein the e�ect of plate

orientation and surface treatment on pool boiling of
He is explored, and in [75J] Ð which deals with boil-
ing from a rotating disk.

The 1996 literature is rich in studies of pool boiling
enhancement. A review of the many techniques devel-
oped to improve ebullient and convective thermal

transport is o�ered in [40J]. Boiling heat transfer from
porous metal and metal mesh surfaces is described in
[45J,63J,71J]. The e�ect of an anionic surfactant on
the pool boiling of water is examined in [37J]. Ebulli-

ent heat transfer from ®nned surfaces is the subject of
[54J,61J], while boiling in vertical channels is examined
in [72J]. The bene®cial e�ect of electric ®elds on pool

boiling from smooth plates is the subject of [43J,67J],
while [65J,74J,73J] deal with the in¯uence of an EHD
®eld on pool boiling from a passively-enhanced sur-

face.
The instabilities induced during the transition from

nucleate to ®lm boiling were studied analytically in

[53J,42J]. Pool boiling CHF in liquid metals, including
data and new correlations, was surveyed in [68J] and

the onset of stable ®lm boiling was the subject of [64J].
Film boiling on a downward-facing curved surface was
explored in [49J], while the in¯uence of dissolved gas

on ®lm boiling in water and of mass di�usion on ®lm
boiling in binary mixtures were investigated in
[58J,62J], respectively. The role played by pool boiling

in the grinding process is described in [76J,57J], in the
preparation of grease in [50J], and in the cooling of
electronics, through the use of a thermosyphon, in

[70J].

12.4. Flow boiling

The growing interest in new refrigerants and

ongoing research on the cooling of fusion reactors are
largely responsible for sustaining the ¯ow boiling lit-
erature during this past year. A new hypothesis of

thermodynamic states was used to underpin an analyti-
cally-derived ¯ow boiling curve [108J]. New experimen-
tal studies revealed that in annular ¯ow the forced
convection mechanism dominates over secondary

nucleation in the liquid ®lm [111J]. The characteriz-
ation of local ¯ow boiling heat transfer coe�cients
under very high heat ¯ux conditions revealed a need

for major modi®cations in correlations used to describe
the subcooled partial nucleate boiling domain [78J].
Flow boiling under reduced gravity conditions was the

subject of [87J] Ð examining annular gas±liquid mix-
tures, and [118J] Ð focusing on veri®cation of the
``sliding bubble'' mechanism with high subcooling. Stu-

dies of ¯ow boiling heat transfer rates in unconven-
tional ¯uids, including organic±water solutions [122J]
and electrolyte solutions [101J], as well as in unconven-
tional geometries, such as porous media [114J], narrow

channels [96J], microchanneled plates with binary mix-
tures [105J], during loss-of-coolant reactor scenarios
[103J], and swirl tubes [76J,109J] are described in the

1996 archival literature.
Ebullient heat transfer to refrigerants received con-

siderable attention in the 1996 literature. A state-of-

the-art review of refrigerant boiling was presented by
[112J]. Flow boiling heat transfer coe�cients for R-134
and R-12 ¯owing in micro®n tubes [110J] and in small
circular and rectangular channels [115J], respectively,

R22 and R407C (itself a mixture) ¯owing in a micro®n
tube [95J], both boiling and condensation of quartern-
ary refrigerant mixtures [107J], and the ¯ow boiling

behavior of ammonia [104J] have also been reported.
The EHD enhancement of ¯ow boiling heat transfer
for R-134a ¯owing in a tube bundle and R-404a in a

micro®n tube is described in [80J] and [106J], respect-
ively, while the mechanism by which helical ribbing
enhances two-phase heat transfer was examined in
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[120J]. Experimental techniques for establishing the
¯ow parameters of importance in two-phase heat

transfer are discussed in [97J] Ð dealing with the use
of a steady or pulsed neutron beam, in [93J] Ð dealing
with the use of a nonintuitive auto-transformer tech-

nique, and [90J] Ð dealing with the application of
laser holography to shock wave propagation and onset
of boiling in He II.

Modeling of the ``boiling crisis'' in ¯ow boiling con-
tinues to receive signi®cant attention. Recent publi-
cations explored various geometric e�ects, including

the in¯uence of tube diameter on CHF in subcooled
¯ow boiling in [79J], the contribution of spacers and
mixing vanes on low velocity CHF in water [81J], and
the impact of twisted-tape inserts on CHF in sub-

cooled, small diameter tube ¯ow [113J]. The e�ect of
nonuniform heating [102J], of subcooling and velocity
[89J], countercurrent annular ¯ow in a thermosyphon

[98J], and oscillatory ¯ow conditions [116J,100J] on
¯ow boiling CHF have also been described. Electronic
cooling applications, constrained by the boiling crisis,

and applications in which CHF thermal modeling
capability must be linked to thermal stress compu-
tations, are discussed in [86J,119J] respectively.

Post-CHF and post-dryout phenomena in ¯ow boil-
ing systems are explored in [83J] for one-sided heating
and high subcooling and in [91J] for low ¯ow con-
ditions. [88J] examines subcooled ®lm boiling of re-

frigerants in up¯ow, while [117J] presents the results of
an experimental study of dispersed ¯ow heat transfer
in circular bends.

Spray and jet impingement cooling constitute a
special case of ¯ow boiling behavior and provide a fer-
tile ®eld for heat transfer research. The transition from

jet-induced convection to nucleate boiling is studied ex-
perimentally in [84J,85J] The fundamental issues
encountered in the boiling of a free-surface, planar jet
are the subject of [121J], the interaction between a

liquid spray and subcooled liquid ®lm is examined in
[94J] and the self-similarity of heat transfer to jets in a
multiple jet array is described in [99J]. The application

of two-phase multiple jet impingement to the cooling
of electronic equipment is discussed in [82J,92J].

13. Change of phase Ð condensation

Papers on condensation during 1996 were separated

into those which dealt with surface geometry e�ects,
those on the e�ects of global geometry and thermal
boundary conditions, papers presenting techniques for

modeling and analysis, papers on free-surface conden-
sation, presentations of unsteady e�ects, and papers
dealing with binary mixtures.

13.1. Surface geometry and material e�ects

One paper analyzed the thermal interaction between

laminar ®lm condensation, forced convection, and a
conducting wall separating the two [4JJ]. Several dealt
with tubes, one with low-®n and 3-D ®n enhancement

[3JJ], a second with 3-D ®ns [5JJ] and a third with
micro®ns [2JJ]. Finally, an analysis was performed
with plates on which there is fog formation [1JJ].

13.2. Global geometry and thermal boundary condition

e�ects

The bulk of the activity in 1996 was in this category.
A numerical solution showed the e�ects of taking ®n
nonisothermness into account [24JJ], another conjugate

analysis discussed the e�ects of ®nite thermal inertia
on the problem of condensation on a vertical plate
[28JJ], while another analyzed the heat, air, and moist-

ure transport in a residential wall [20JJ]. Several papers
investigated tube geometries. One presented a theory
for condensation in a vertical tube [19JJ], another pre-
sented a measurement technique for experimentally

determining the in-tube condensation heat ¯ux [16JJ],
while another applied the population balance model to
analyze condensation inside of a horizontal tube [9JJ].

An analysis was presented for nonisothermal absorp-
tion on horizontal tubes used in absorption heat pump
applications [10JJ], another used numerical methods to

deal with noncondensables in horizontal tubes and
tube banks [7JJ], while another looked at the e�ects of
condensation inundation and noncondensable gases in

horizontal tube bundles [33JJ]. Several focused on ®n
enhancement. One presented a review of properties of
refrigerants for low-®nned tube applications [27JJ],
another presented experimental results for horizontal

integral-®nned tubes [11JJ], another similar paper
focused on low-thermal conductivity ®ns [14JJ], and
another concentrated on R-123 applications [26JJ].

Condensation in tubes of small hydraulic diameter was
experimentally evaluated [30JJ,31JJ], condensation was
seen to be a limiting process in the cooling of ®bers

with cross-¯ow [25JJ], and moisture conditions were
addressed for walls with cellulose, loose-®ll insulation
construction [13JJ]. Three papers dealt with green-
houses; two on dynamic heat transfer [22JJ,23JJ] and

another on the in¯uences of condensation and rain on
heat transfer coe�cients of claddings [21JJ]. Two
papers were on nuclear plant containment vessels, one

discussed comparisons between computations and test
data [15JJ] and another presented primary parameters
and methods for heat transfer coe�cient evaluation

[12JJ]. Other geometric features studied include steam
turbines [6JJ], rotating disks [32JJ], agitated vessels
[17JJ], closed thermosyphons [18JJ], and cryogenic
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traps [8JJ]. Finally, experimental results were presented
for augmentation of condensation by electrohydrody-

namical means [29JJ].

13.3. Modeling and analysis techniques

Papers which seemed to focus on analysis techniques
included two which accounted for the e�ects of wall
conduction [41JJ,37JJ], two which showed numerical

modeling of condensation with noncondensable gases
[39JJ,40JJ], another focused on nonequilibrium con-
densation in a hypersonic ¯ow [38JJ], and one near-

critical region characteristics [35JJ]. Papers dealt with
on system analysis included one on inverted U-tubes
[34JJ] and another on fume formation and deposition

in kraft recovery boilers [36JJ].

13.4. Free surface condensation

Free surface condensation papers were on surface
wave e�ects [46JJ, 45JJ] and on desorption of carbon
dioxide from falling ®lms [42JJ]. A two-paper presen-

tation dealt with condensation on water drops
[47JJ,44JJ], while another discussed condensation with
hygroscopic aerosols [43JJ]. A dropwise condensation
paper investigated the performance of Langmuir±Blod-

gett surfaces [48JJ].

13.5. Unsteady e�ects

Condensation papers were presented for pulsating
bubbles [52JJ], translatory motion of bubbles with
high Nusselt numbers where the unsteadiness comes

for their rapid growth [49JJ], and condensation in¯u-
enced by sound [51JJ]. Instability considerations were
directed to ®lm growth on a vertical surface [50JJ] and

homogeneous nucleation in a laminar ¯ow reactor
[53JJ].

13.6. Binary mixtures

Studies with binary mixtures were in vertical tubes
[55JJ] and channels [58JJ], horizontal tubes [54JJ], and

with noncondensable gases [56JJ]. Finally, a paper was
presented for pseudo-dropwise condensation in a
binary mixture [57JJ].

14. Change of phase Ð freezing and melting

14.1. Melting and freezing of spheres, cylinders and
slabs

Several freezing investigations in cylindrical and slab

geometry were performed. Among the cylindrical ge-
ometry studies was ice ®lm accretion on a rotating

cylinder to simulate marine conditions [4JM]; melting
characteristics along a bundle of horizontal heated
cylinders [5JM]; experimental study of natural convec-

tion melting of a horizontal ice cylinder immersed in
immiscible liquid [oil] [6JM]; and exothermic heat of
mixing measured during melting of ice cylinders in sul-

furic acid [3JM]. Slab geometry's were investigated in
polymer freezing for crystallinity and spherulite e�ects
in reinforced carbon ®ber matrix [1JM], and an exact

solution of freezing during deep-freezing of slab
products was developed [2JM].

14.2. Stefan problems

Fikiin [7JM] developed a generalized numerical

modeling for a Stefan problem using an improved
enthalpy approach based on a quasi-one-dimensional
formulation.

14.3. Ice formation/melting in porous materials

Studies in this area included investigations into natu-
ral convection melting of porous media in a rectangu-

lar enclosure [8JM]; principles of ice formation in
biological materials for cryopreservation [10JM]; ex-
perimental and theoretical prediction of freezing times

of strawberry pulp in large containers [11JM]; numeri-
cal modeling of snowmelt in®ltration into frozen soil
[12JM]; modeling of melting in heterogeneous snow
cover on permeable frozen soil [13JM]; and a numeri-

cal analysis of rectangular foods during freezing [9JM].

14.4. Contact melting

One study, [14JM], established a heat transfer corre-

lation for natural convection in a cavity for contact
melting applications.

14.5. Melting and melt ¯ows

Activity in this area fell into several major group-
ings: injection molding, laser melting, metal melts, and
miscellaneous.
Injection molding studies investigated micro¯ow

marks as a function of the melt temperature in injec-
tion molding [38JM]; experimental and numerical
study of polymer melt growth in an injection molded

part [21JM]; calculation of cooling time in injection
cooling [26JM]; and the use of BEM modeling to ana-
lyze complex 3D geometric problems in injection mold-

ing [30JM].
Thermal e�ects in pulsed laser melting was studied

by [17JM] and a kinetic theory for laser pulse heating

E.R.G. Eckert et al. / Int. J. Heat Mass Transfer 43 (2000) 1273±13711298



including heat transfer in the melt was presented by
[32JM]. Other modeling work investigated: laser cut-

ting using BEM [24JM]; heating and melting during
pulsed laser fabrication of ultra-shallow p plus-junc-
tions at the nanoscale [39JM]; non equilibrium tem-

perature ®eld around the melting and crystallization
front induced by pulsed laser irradiation [33JM]; and
numerical predictions of oscillatory ¯ow convection in

a laser melt pool [29JM]. Experimental studies of laser
melting of Ti±15Al±20Nb alloy [37JM], and laser melt-
ing interface shapes in ¯oat zones [23JM] were also

presented.
Experimental studies explored the use of microwave

heating as a method to improve iron ore reduction
[40JM] and a development of an electromagnetic levi-

tation melting device [16JM]. Several other investi-
gators studied various conditions in the melt:
convection in liquid metals [15JM]; heat transfer in the

siro-smelting process [34JM]; melt analysis due to elec-
tron beams in re®ning processes [28JM]; micropyretic
reaction in the melt [35JM]; simulation of thermosolu-

tal convection in liquid metals [18JM]; numerical study
of natural convection melting of pure metals in a cav-
ity [31JM]; Marangoni convection in a 1D model of

¯oat zone in a melt [27JM]; and simulation of heat
and ¯uid ¯ow and interface shapes in ¯oat zone of
lithium niobate melt [20JM]. In addition, modeling of
nonisothermal melt ¯ows with water [22JM] and a nu-

merical study of melt±water interaction [25JM] were
presented.
Cyclic phase change [freezing and melting] with ¯uid

¯ow was studied by [36JM] and the viscous stagnation
¯ow solidi®cation problem for a pure substance was
addressed by [19JM].

14.6. Powders, ®lms, emulsions, and particles in a melt

The principles of ultrasonic wave atomization of a

viscous melt was described by [41JM].

14.7. Glass melting and formation

Several glass burners were described including the
clean®re High Radiation burner which maximizes heat
transfer [42JM], and a submerged combustion furnace

[46JM]. Analysis of heat transfer optimization in oxy-
fuel burners [44JM] and an analytical model to evalu-
ate particulate emissions in oxy-fuel ®red glass furnaces

[45JM] was also presented. Lastly, [43JM] developed a
numerical simulation of creeping ¯ow and heat transfer
in a forehearth for glass bottle production.

14.8. Welding

A review of heat transfer studies in arc welding was

presented by [49JM]. In addition, studies on thermal
cycles in multiple electrode submerged arc welding

[47JM] and measurement and prediction of energy
absorption in laser beam welding [48JM] were per-
formed.

14.9. Enclosures

An experimental enclosure phase change study was
performed using para�n materials [51JM]. In addition,

numerical studies with multizone adaptive grid gener-
ation in several enclosures including rectangular,
eccentric annuli, and an open cavity [52JM] and a

study of ¯ow in and heat transfer across a vertical cav-
ity of water during freezing [50JM] were performed.

14.10. Nuclear reactors

High pressure melt ejection and corium dispersion

was studied in large scale models [53JM], in scaled ex-
periments and models by [54JM] and [57JM], and in a
scaled annular cavity [55JM]. In addition melt ¯ow dis-

persion of direct containment heating of a nuclear
reactor [58JM] and the molten pool thermal hydraulics
during molten core±concrete interactions in a nuclear

accident were investigated [56JM].

14.11. Energy storage

Energy storage by PCMs were studied by various

groups. Their studies included: measurement of heat
transfer characteristics in low-temperature PCM sys-
tems using salt-hydrates [60JM]; latent heat thermal
energy storage enhancement by using an externally

®nned [73JM] and an internally ®nned radial tube
[74JM]; thermal storage in a hollow cylinder of PCM
[75JM]; and PCMs for use in thermal control of plastic

quad ¯at packages [69JM]. In addition several numeri-
cal studies were performed to study thermal protection
by latent heat absorption of a PCM ®lled rectangular

cell [66JM,67JM]; cold heat release of PCM of air-
emulsions for direct-contact heat exchange [68JM];
cooling of a heated surface with PCM [70JM];
enhanced heat transfer by insertion of a metal matrix

into PCM [71JM]; and thermal radiation e�ects in
PCM systems [72JM].

14.12. Multiple PCM studies

The superiority of mixed PCM families vs. single
PCM families for energy storage was studied by
[59JM]. Other studies in this area included: cyclic heat

transfer in a novel storage unit of multiple PCMs
[61JM]; 1D FEM model for enhancement of energy
charge±discharge rates in slabs of di�erent PCMs
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[62JM]; FEM study of multistage PCM system [63JM];
exergetic study of energy storage using multiple PCMs

[64JM]; and a theoretical study of thermal energy
storage by PCM [65JM].

14.13. Mushy zoneÐdendritic growth

Work in this area included a study to improve the
enthalpy method for multicomponent phase change

conditions [78JM]. Other work investigated oscillatory
instability during binary alloy solidi®cation in the
mushy layer [76JM] and thermosolutal convection

during freezing of seawater [77JM].

14.14. Metal solidi®cation

Studies of metal solidi®cation included work in
binary alloys and other metals.
Binary alloys studies included: modeling of macro-

scopic heat ¯ow with microscopic nucleation and
growth in a binary alloy [80JM]; numerical study of
the solidi®cation of a binary alloy with globulitic mor-

phology [79JM]; study of instabilities in ¯uid layer of a
binary alloy during freezing [83JM]; scaling analysis of
unidirectional solidi®cation of a binary alloy [84JM];

modeling of directional solidi®cation to test stability in
lead/tin system with remote ¯ow [82JM]; theoretical
study of the formation of island ®lms from binary
melts [85JM]; and a numerical study of heat and ¯uid

¯ow in directional crystal growth of GaAs [87JM]. In
addition, studies on the heat transfer in spray formed
billets [81JM] and numerical approaches to solidi®ca-

tion [86JM] were presented.

14.15. Crystal growth from melt

Work in this area was broken up into Czochralski,
Bridgman and general crystal growth topic areas.
Czochralksi crystal growth was simulated by [89JM]

and a numerical study of Czochralski melt con®gur-
ation was presented by [102JM]. In addition, a numeri-
cal and experimental study of oxygen transfer during

Czochralski growth of a single silicon crystal in a mag-
netic ®eld [94JM] and an experimental study of Czo-
chralski growth of BGO and BSO crystals [105JM]
were presented.

Bridgman crystal growth was investigated exper-
imentally to assess interface curvature in vertical Bridg-
man growth of lnP crystals [104JM] and gravity

induced heat transfer e�ects during Bridgman growth
of lnGaAs [90JM]. Numerical simulation of Bridgman
growth was also used to investigate the following:

interface curvature and macro-segregation in vertical
Bridgman growth [93JM]; optimal design strategy for
Bridgman crystallization process [91JM]; heat and

species transport in vertical Bridgman crystallization
processes [92JM]; liquid encapsulated vertical Bridg-

man crystal growth [98JM]; and Bridgman growth of
beta-NiAl crystals [101JM].
A review of crystal growth work at Fukuda Labora-

tory in Japan over the last 25 years was presented by
[103JM]. In addition, general crystal growth topics
covered included: latent heat e�ects on crystal interface

stability [96JM]; study of interface shapes and thermal
®elds during gradient solidi®cation of single sapphire
crystals [88JM]; analysis of radiative heat transfer in

crystal pulling [95JM]; numerical study of the use of
magnetic ®elds to radially segregate dopants in silicon
crystal growth [97JM]; numerical study of crystal
growth in vertical zone melts [99JM]; and the study of

kinetics and size of crystals formed for use in puri®-
cation of food concentrates [100JM].

14.16. Casting

The principles of a new technique of ``microcasting''
of steel objects was investigated by numerical and ex-

perimental study of the interface heat transfer and
bonding characteristics of successively impinging
molten metal droplets [106JM].

14.17. Splat cooling

Experimental investigation of molten solidi®cation

on a substrate for use in splat cooling applications was
presented by [107JM].

14.18. Miscellaneous

Several miscellaneous phase change studies were also
presented. These included: experimental-numerical pre-
diction of thermal properties during phase change

[108JM]; a 1-D numerical model of ice formation and
melting on lakes [109JM]; and an experimental study
of natural convective freezing of warm water faster

than cold water under some circumstances [110JM].

15. Radiative heat transfer

The papers below are divided into subcategories

which focus on the di�erent impacts of radiation.
Papers describing the development or application of
models dominate the literature on radiative heat trans-

fer. Papers focusing on the numerical methods them-
selves are reviewed in the numerical methods section
under subcategory radiation.
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15.1. In¯uence of geometry

The calculation of view factors for di�erent geome-

tries continues to be of interest. Analytic expressions
for concentric-cylindric view factors are given in [7K].
Khoddam et al. [2K] derive a view factor for a nonuni-

form cross-section shaft and a concentric cylinder. A
cell-to-cell transport Monte Carlo method was devel-
oped by Palmer et al. [6K] and applied to arrays of

®xed discrete surfaces. Antoniak et al. [1K] address the
same problem with the MCLITE code. The radiative
exchange between square parallel channels in a con-
centric monolith structure is modeled in [8K]. A ®nite

volume method for radiative heat transfer in cylindri-
cal enclosures is presented by Moder et al. [5K]. Axi-
symmetric radiation transfer through cylinders as well

as nonaxisymmetric transport through two- and three-
dimensional sectors is considered. The radiative heat
transfer in three-dimensional complex geometries using

the Discrete Transfer Method is described in [3K]. The
method is based on body-®tted grids so that it can
easily be used in CFD calculations. The reduction of
the radiative load on cryostats windows by straight

and bend tubes is studied in [4K]. Papers discussing
enclosures and processing chambers are referenced in
the section on radiation combined with convection and

conduction.

15.2. Participating media

Papers in this category can be divided into those
which focus on emission and absorption of the media

and those which deal with scattering.
Radiation transfer in molecular gases such as CO2

[22K] and O2 [32K] is discussed. Lallemant and Web-
ber [27K] use an exponential wide band model to

determine radiative properties of a variety of molecular
gases. The model for rotary desorbers of Cook et al.
[17K] takes into account the real nature of the partici-

pating gas as well as CO2 and H2O in the gas phase.
Bhattacharjee et al. study the in¯uence of gas-phase
radiation from O2:N2 mixtures in ¯ame spread in

microgravity [13K]. Strong radiation solely from three-
atomic molecules characterizes combustion using syn-
thetic air [33K]. Radiative transfer in nongray gases is
considered in [16K,24K,38K]. A procedure for reorder-

ing absorption coe�cients to predict radiative gaseous
exchange is proposed by [28K]. Bresslof et al. [15K]
assess the performance of a di�erential total absorptiv-

ity solution of the radiative transfer equation. Kamiuto
et al. study combined radiation and convection in
absorbing and emitting gases [23K]. Radiation from

shock wave heated gases was studied in a number of
investigations: air was considered in
[29K,12K,40K,47K], the e�ect of argon additions to

N2±CH4 is pointed out in [26K]. Shock tube exper-
iment were conducted in a simulated atmosphere of

Titan in order to study the simulated shock layer of
the Huygens probe, which will enter the Titan atmos-
phere in 2003 [37K].

The emission and absorption of radiation by parti-
culates plays an important role in high soot density
¯ames [9K,25K]. Baek [11K] studies the ignition of

propane±air mixtures by radiatively heated inert par-
ticles.
A large number of studies deal with the e�ects of

scattering and/or refraction. A two ¯ux method has
been used to model the radiative transfer in semi-
transparent layers [44K,45K,42K] and in composites
[43K,46K]. Scattering also plays a major role for the

radiative transfer in porous media [20K,10K], pow-
dered and ®brous polymers [36K], as well as ®brous
thermal insulation [18K,19K,34K]. Siegel [41K] dis-

cusses internal radiation e�ects in zirconia thermal bar-
rier coatings. Dependent/Independent scattering
regimes were studied in [21K] using a discrete dipole

approximation.
The radiative transfer in two-layer media with Fres-

nel interfaces is analyzed in [48K,30K]. These studies

are extended to multi-layer media in [31K]. Absorp-
tion, emission and scattering in two-dimensional media
is investigated in [49K,39K,14K]. Combined e�ects of
radiative and conductive heat transfer can lead to ther-

mal stresses in semitransparent sapphire crystals which
is discussed in [35K].

15.3. Radiation combined with convection, conduction,
or mass transfer

The interaction between conduction, convection and
radiation was studied in such di�erent investigations as

on rapid thermal processing systems [72K], gradually
expanding channels [67K], discretely heated open cav-
ities [54K], L corners [51K], backward facing steps

[68K], packed beds [64K], and isobutane crackers
[53K]. Radiation and conduction heat transfer play an
important role in silica aerogels [61K]. Coupled inverse

conduction-radiation problems are considered in [78K].
The authors propose an iterative algorithm based on a
space-marching technique. Sakami et al. [79K] use a
discrete ordinates method to describe the conductive-

radiative heat transfer in complex two-dimensional
geometry. A ®nite-volume multi-grid solver is proposed
in [65K] for the modeling of gray-body surface radi-

ation coupled with ¯uid ¯ow. A ®nite volume method
is also used to describe the radiative±convective heat
transfer around a circular cylinder in a cross ¯ow

[70K]. Convection and radiation also play a role in
thermocapillary ¯ows in microgravity [66K] and in
chemically reactive nozzle ¯ows [71K,75K]. Convection
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and radiation in micropolar ¯uids is studied in [77K].

Convection and radiation interaction are also import-

ant in ¯uidized beds [56K], in porous radiant burners

[69K], in the transient thermal performance of line

traps [60K], in waste-heat boilers [82K], and in fur-
naces [59K,76K,63K]. Natural and mixed convection

combined with radiation are considered in

[80K,62K,50K] and in the discussion of enclosures

[73K,52K]. Combined heat transfer is also discussed in

connection with insulation [57K,58K] and radiation

barriers in ventilated attics [74K,81K]. Heat, momen-
tum, and mass transfer are considered in the shrinking

of biomass particles exposed to thermal radiation

[55K].

15.4. Intensely irradiated materials

This year only a small number of studies is con-

cerned with intensely irradiated materials. Foss and

Davis discuss the transient laser heating of single solid

microspheres [83K] based on a Mie theory model.

Ultrashort laser pulses are used for the heating of sili-

con microstructures in order to reduce adhesion [84K].
The use of CO2-laser radiation for the localized curing

of epoxy-based materials is described by Scarparo et

al. [85K].

15.5. Experimental methods and properties

A number of studies focused primarily on exper-

imental methods. Interference images were used to

determine the temperature distribution in the boundary

layer near the wall in studies of propagation of pre-

mixed ¯ames in a closed vessel [87K]. A direct radio-

metric technique was used to measure the spectral and
directional distribution of radiation exiting a packed

bed [90K]. Jones et al. [89K] measure the spectral±

directional emittance of oxidized copper in a wave-

length range from 2±10 micron. Zaworski et al. [93K]

use Monte-Carlo methods to interpret their measure-

ments of bi-directional re¯ectance data. Spectral IR

directional-hemispherical transmission and re¯ection
measurements were performed in [86K] on ®ne cell PU

rigid foams. The measurement of Hall coe�cients and

DC resistivities was used to determine radiative prop-

erties of liquid metal alloys [88K]. Yoshida et al. [92K]

report the simultaneous measurement of thermophysi-

cal and radiative properties of semi-transparent liquids.
The cooling characteristic of cutting grain in grinding

is measured via infrared pyrometry using an optical

®ber [91K].

16. Numerical methods

The development and application of numerical

methods continue as topics of signi®cant research.
New procedures and algorithms are developed for
solving the partial di�erential equations that govern

heat transfer and ¯uid ¯ow.
Methods are also adapted to new computer hard-

ware enabling parallel processing. There is an ever-

increasing variety of practical problems, to which nu-
merical methods are applied. In this review, the papers
that primarily focus on the application of a numerical
method to a speci®c problem are included in the

appropriate application category. The papers that
describe the details of a numerical method are refer-
enced in this section.

16.1. General techniques

New approaches and algorithms of general utility
are described in a number of papers. A generalized

object-oriented approach for solving di�erential
equations is outlined in [2N]. The modi®ed strongly
implicit procedure is combined in [5N] with an adap-

tive optimization procedure based on the residual vec-
tor norm. The addition correction multigrid method is
analyzed in [3N]. Reference [1N] describes di�erent
acceleration schemes for eigen function expansions of

partial di�erential equations. Parallelization tools and
their application to structured CFD codes are dis-
cussed in [4N]. Parallel computing is applied to heat

and moisture transfer in unsaturated soils [6N,7N].

16.2. Conduction

The ADI method is extended to multidimensional

heat conduction equation in [10N]. Transfer functions
are used for obtaining transient temperature ®elds in
cylinders [8N]. For di�usion models, [11N] describes a

new boundary treatment as applied to hexagonal
meshes. The conjugate heat and mass transfer is calcu-
lated in a desiccant system [9N].

16.3. Buoyant convection

Reference [15N] describes the analysis of the
instability in buoyant convection in cylinders heated
from below., The Galerkin and pseudo-spectral

methods are compared in [12N] for the simulation of
Rayleigh±Benard convection. Reference [14N] evalu-
ates the roll patterns formed in a Rayleigh±Benard

convection in a rectangular layer. The convection and
solute segregation in vertical Bridgman crystal growth
process are analyzed in [13N].
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16.4. Phase change

A temperature-based formulation is described in

[16N] for the phase change situation. The Stefan
problem in a stagnation ¯ow is de®ned and investi-
gated in [21N]. Reference [20N] develops a conjugate

heat transfer analysis for a phase change system. Nu-
merical anomalies in the simulation of directional soli-
di®cation are discussed in [18N]. A ®nite-volume

method is described for directional solidi®cation [19N].
A number of numerical techniques are used to deter-
mine the e�ect of mold heat transfer during transfer
molding [17N].

16.5. Convection and di�usion

A new ®nite-volume method is described for the
convection±di�usion problem [23N]. For high-resol-
ution convective schemes, a novel technique is pro-

posed for accelerating the convergence rate [22N].
Normalized splines are used for the ®nite-volume sol-
ution of convection±di�usion problems [25N]. Refer-
ence [24N] presents ¯ux-based ®nite-volume

formulations.

16.6. Flow equations

A parallel implementation for solving the Navier±
Stokes equations is described in [34N]. Reference [32N]

develops a Fourier analysis of the SIMPLE algorithm
on a collocated grid. A local grid re®nement method
for ¯uid ¯ow analysis is described in [31N]. Reference

[30N] reports on the performance of a multigrid
method with a higher-order convection±di�usion
scheme for three-dimensional ¯ow. A simpli®ed con-
trol-volume ®nite-element method is described in

[29N]. Reference [26N] presents a complete pressure-
correction algorithm for a nonstaggered grid. The con-
tinuity constraint method for three-dimensional ¯uid

¯ow is given in [37N]. Time-dependent Navier±Stokes
equations are solved by the vorticity±velocity method
[36N]. A Riemann-problem-based approach is

described for steady incompressible ¯ows [35N]. Refer-
ence [33N] presents a second-order splitting algorithm
for thermally-driven ¯ows. Error estimation and adap-
tivity in ®nite-element analysis of convective heat

transfer are discussed in [27N,28N].

16.7. Application to special problems

A number of papers describe the application of nu-
merical methods (with appropriate enhancements) to

problems with special physical or numerical features.
Reference [49N] presents a numerical study of ¯ow
and heat transfer in a wavy channel. Flow in an annu-

lus with a moving core is analyzed in [48N]. A multi-
grid method is used to calculate thermocapillary

convection [47N]. An analysis is presented in [46N] for
the combustion chamber of a diesel engine. Reference
[45N] describes a numerical prediction of ¯ow and

heat transfer in a welding process. Heat transfer in a
ba�ed channel is calculated in [44N]. A numerical
study of combustion of a liquid droplet is given in

[43N]. Reference [42N] describes a simulation of pre-
mixed ¯ames. Numerical techniques are applied to the
creeping ¯ow of a Bingham plastic [41N]. The ¯ow in

an impulsively started driven cavity is analyzed in
[40N]. Boundary ®tted coordinates are used for the
calculation of ¯ow in ducts with irregular cross sec-
tions [39N]. The ¯ow during the collision of a liquid

droplet on a substrate is calculated in [51N]. Finite el-
ement modeling is used for the simulation of laser
welding [50N]. Particle methods are employed for the

numerical solution of the Boltzmann equation [38N].

17. Transport properties

17.1. Transport properties

Contributions in this section range from the basic
i.e. the in¯uence of low-energy molecular collisions

involving a light collision partner (H2) upon the trans-
port properties of air to a concern with the transport
coe�cients for speci®c systems: textile ®bers, common
building materials, food products and Seebeck e�ect

materials [1P±5P].

17.2. Thermal conductivity and thermal di�usivity

Strikingly di�erent experimental techniques are used

to measure thermal properties of diverse systems. The
accuracy of thermal conductivity and di�usivity
measurements by the parallel wire method is assessed

by a model accounting for the probe radius and con-
tact resistance between material and probe [11P]. A
laser-induced grating technique determines the di�usiv-

ity of aqueous solutions of methanol [18P]. A transient
spherical source method measures the thermal conduc-
tivity of liquids and gels [12P]. An AC-heated strip
(wire) technique obtains thermal properties of am-

monium salts in solid and molten states (thiocyanate,
formate, acetate, nitrate) [14P]. Using an apparatus
based on the ¯ash method, thermal properties for poly-

crystalline HgS and Sb253 were observed [9P].
A number of papers focus on speci®c systems using

temperature measurements in the system and e�ective

thermal conductivity to express ®ndings. Thus the in-
¯uence of ®ring temperature and porosity on thermal
conductivity and di�usivity of iron ore pellets are
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reported [16P]; the e�ective thermal conductivity of
loose particulate systems measured (273±900 K) [6P];

and the ®ndings of a geothermal project in Albania for
rock sample thermal conductivity and temperature
pro®les in selected boreholes of a region [8P].

Other studies consider: the quantities a�ecting the
thermal conductivity of a magnetic ¯uid [17P]; polish-
ing and honing abrasive and the internal heat transfer

process [10P]; polarization and anomalous heat trans-
port in a ferroelectric (MAPCB crystal) [15P] and ther-
mal e�ects in a high-performance reactor [13P]. A

method of determining temperature variable properties
of composite materials is validated by comparison with
experiment in [7P].

17.3. Di�usion, surface tension, viscosity and radiation
properties

The di�usion phenomenon is examined for the very
hot electron gas [21P], metal system and semiconduc-

tors [19P], and its basic transport expression shown to
follow the path of J. Stefan (1871) [24P]. The surface
tension of aqueous solutions of lithium bromide con-

taining 1-octanol (simulating heat-pump working
¯uids) is measured for the ®rst time [20P]. The non-
Newtonian behavior of glass melts is considered and

four di�erent expressions for representing the gross vis-
cosity e�ect assessed [25P]. For radiation, properties of
cellular ceramics at high temperatures (1200±1400 K)
are measured and models are assessed for determining

absorptivities for absorbing, emitting and scattering
media [22P,23P].

17.4. Thermodynamics

Work here clusters about two themes. The ®rst is
the extension and re®nement of thermodynamic analy-
sis to include evolving interfaces far from equilibrium

[26P], work, heat and material exchange between a dis-
crete system and its environment as derived by ®eld-
theoretical methods [27P], transport process theory in

semiconductors as viewed by equilibrium and irrevers-
ible thermodynamics [29P], the reproduction of linear
nonequilibrium thermodynamics within the framework
of general relativity for static space-times [31P], and

perturbational thermodynamics for coupled electro-
chemical heat and mass transfer [32P]. The second
theme is the optimum performance of models of prac-

tical systems: optimum operation of irreversible Carnot
heat engines of ®nite size at maximum power output
[28P], optimizing the energy output for an endoreversi-

ble Carnot refrigerator [33P], and second law analysis
of adsorption cycles with thermal regeneration [30P].
Thermodynamic properties for binary mixtures of R-

32/125 are reported based on the Van Der Waals
equation of state [34P].

18. Heat transfer applications: heat exchangers and heat

pipes

Reported work includes the analysis and experimen-
tal test of applications conventional and innovational,

utilizing materials and designs which extend and
enhance heat transfer performance.

18.1. Heat exchangers

Numerical analysis is employed to determine the
performance of perforated plate matrix exchangers, the
heat transfer coe�cients in a gas ¯uidized bed and
cross-¯ow heat exchangers [36Q,21Q,35Q,6Q,26Q,

38Q]. Heat exchanger networks are modeled for mini-
mum area and total annual cost and for optimal retro-
®t. Transient operation is considered for a matrix solar

air heater and a shell and tube exchanger
[16Q,7Q,3Q,11Q]. A number of sharply focused studies
investigate: The heat transfer of elastic, nonNewtonian

¯uids in rectangular ducts, gas (CO2) absorption with
wetted ¯ow surfaces, a microporous heat sink for cool-
ing radar systems and exchanger performance in

geothermal heating systems [14Q,27Q,24Q,22Q].
Experimental works focus on ¯uid-to-particle heat

transfer under a variety of conditions, low-tempera-
ture, helium heat exchangers, and heat exchange in the

presence of phase change [4Q,17Q,28Q,32Q,9Q,40Q,
20Q,10Q,19Q,18Q]. Yet others report data for exchan-
gers with helical ba�es, perforated-plates, propeller

driven ¯uid rotation in double-pipe design, and in con-
junction with hot water storage [23Q,31Q,39Q,13Q]. A
group of papers provide a general approach and over-

view of heat exchangers with speci®c consideration of
fundamentals, compact designs, exchanger networks,
cost minimization, high-altitude aircraft exchangers,

shell-and-tube optimization and trouble shooting,
chemical accumulators and the comparative virtues of
plate and tubular exchangers [5Q,33Q,37Q,30Q,8Q,
12Q,15Q,29Q,2Q,34Q,25Q,1Q].

18.2. Design/materials

The use of aluminum is the common thread linking
a number of e�orts: Micro heat exchangers using por-

ous layers, brazed shell-and-tube for use with noncor-
rosive gases and liquids, and automotive exchangers
[42Q,55Q,64Q,45Q]. The concern with materials con-

tinues with the study of plastic cross¯ow exchangers
for the air±water vapor mixtures, ¯uoropolymer resins
for low cost, high performance exchanger material, the
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heat transfer behavior between PVC and steel and the
electronic packages and semiconductor laser diode

array [44Q,63Q,47Q,43Q,57Q].
A signi®cant cluster of works feature phase change

as the chief heat transfer design element. The wettabil-

ity of aluminum plates in an air-to-air heat is evaluated
experimentally; the capillary pump loop with phase
change is tested for possible use as a space thermal

control system; the torque tube heat exchanger for
super-conducting generators is analyzed, and the
thermal-hydraulic performance for helium-cooled

divertors used in large tokamak is optimized
[61Q,53Q,58Q,50Q]. Other papers feature bayonet-tube
evaporators and condensers in refrigeration practice,
a comparison between two approaches to condenser

design, a design model for an absorption heat
pump recti®er, powerplant generator air-cooler design
and exchanger test for structural integrity

[54Q,62Q,52Q,46Q,51Q,48Q]. A ®nal group of papers
in this area provide general information on heat
exchangers, the pinch analysis method including energy

factors and exchanger optimization using second law
analysis [56Q,59Q,60Q,49Q,41Q].

18.3. Direct contact exchangers/cooling towers

These devices are central in water conservation
e�orts but also occur in electronic component cooling

and air puri®cation activities among others. The cross-
¯ow cooling tower, dominant in process, industrial,
and power plant applications for half a century has
been joined by a growing number of industrial coun-

ter¯ow towers. Mathematical modeling and computer
simulation, and cross to counter-¯ow repack highlight
this emerging application [74Q,68Q,75Q,73Q]. For the

thermal design of wet, counter¯ow and cross¯ow types
of mechanical and natural draught cooling towers a
detailed, step by step methodology is given using logi-

cal decisions, empirical relations and assumptions.
Such e�orts in cooling tower design and water treat-
ment have overcome many of the di�culties associated
with cooling tower use [71Q,72Q,66Q,76Q,69Q]. Cool-

ing tower e�ciency and its relationship to energy con-
servation and overall building or plant e�ciency is
described [70Q,65Q], and ®eld tests of heat and mass

exchangers with steam-gas mixtures presented [67Q].

18.4. Enhancement

Attempts to enhance heat transfer rest on strikingly
di�erent approaches: The use of porous coatings and
inserts; surface modi®cation and surfactants; additives,

including solid particle suspensions; twisted tape
inserts, vortex generators; spiral coils of ®nned tubes;
and spine ®nning of tubes [97Q±

100Q,84Q,90Q,92Q,104Q,77Q,102Q,103Q,79Q]. Also
considered are compact and miniature exchangers, the

e�ect of ¯ow character (natural, forced and mixed con-
vection) on heat transfer, and the limited in¯uence of a
radiating ®n array [87Q,80Q,91Q,89Q,88Q]. Several

papers report data for free convection and radiation in
horizontal ®nned tube bundles, three-dimensional
plate-®n and tube exchangers, preformed trapezoidal

®ns for tube-in-®n exchangers e�ective in low Reynolds
number ¯ow, and absorption exchanger performance
[96Q,85Q,86Q,81Q,83Q]. A ®nal group of works pro-

vide general background information regarding heat
transfer enhancement [82Q,94Q,93Q,95Q,101Q,78Q].

18.5. Fouling/deposits/surface e�ects

For heat exchangers subject to fouling, investi-
gations focus on the fouling mechanism as well as

maintenance strategies and fouling assessments
[118Q,115Q,106Q,105Q]. Fine particle deposition in
compact plate ®n exchangers is studied, the thermal re-
sistance in nonuniform fouling of cross-¯ow exchanger

tubes is analyzed, and progress with gas-side fouling of
surfaces reviewed [112Q,114Q,111Q,113Q]. Fireside
fouling by ash, slag and corrosion is the focus of sev-

eral papers [108Q,117Q,109Q]; several others center on
scale formation and microbiological growth on the
water side and leak detection [110Q,107Q,119Q,116Q].

18.6. Reactors Ð chemical/nuclear

Interest here is directed toward ¯ame support layer

geometry and materials on the e�ciency of gas radiant
burners, the estimation of kinetic and heat transfer
parameters for a wall-cooled ®xed-bed reactor and the

observation of heat transfer in a circulating ¯uidized-
bed combustor [122Q,120Q,121Q].

18.7. Thermosyphons Ð heat pipes

As understanding and the range of application
increases these devices continue to interest investigators

and designers. The grooved or ®nned heat-pipe of disk
shape is considered for cooling electronic components
as well as other applications [142Q,132Q,141Q,131Q,
133Q,128Q]. Additional studies consider pressure and

velocity e�ects for the ¯at-plate design [129Q,134Q],
and the in¯uence of working ¯uids, container ma-
terials, and wick structures on the heat transfer,

characterized as e�ective thermal conductivity of the
device [123Q]. Speci®c consideration is given to the
stainless steel/ammonia loop, a model to analyze a

liquid-metal heat-pipe start up, the development of a
heat-pipe thermal diode, vibration e�ects on the capil-
lary limit for a copper/water design and transient

E.R.G. Eckert et al. / Int. J. Heat Mass Transfer 43 (2000) 1273±1371 1305



behavior of the device [140Q,139Q,137Q,130Q,125Q].
The state of our knowledge of the heat-pipe is pro-

vided by two papers. One describes the measure of
heat transfer performance of an industry standard,
wavy plate ®n-tube condenser and compares the results

with a R22 thermosyphon test rig, analysis revealing
excessive ®n-tube resistance in the industry standard.
Sectioning and microscopic examination con®rmed this

®nding [127Q]. The second describes the use of a
double-heat pipe (concentric) to create a large area
black body for generating precise spectral irradiance in

the red and near-infrared range [138Q]. The device's
versatility is further con®rmed by its applications in
diverse situations: cooling of metal oxide semiconduc-
tor thyristors by miniature heat pipes, geothermal use,

reciprocating heat pipes under development for engine
pistons, and air conditioning in industrial plants
[124Q,136Q,135Q,126Q].

18.8. Miscellaneous Ð thermodynamic analysis/energy
conservation/ storage

For condensers, conditions causing pinch points are

identi®ed when using zeotropic refrigerant mixtures,
methods for calculating shell-side condensation in rod-
ba�e con®gurations and the performance of water and

air cooled units predicted [157Q,155Q,154Q]. Waste
heat recovery is considered for industrial refrigeration
plants, metal-hydride heat transformers and waste-to-

energy power plants [156Q,149Q,151Q]. A number of
analytical studies examine the performance of energy
storage concepts [147Q,158Q,153Q,152Q]. A novel
conservation concept is applied to turbomachinery

analysis, and the performance of irreversible refriger-
ators, heat pumps, and thermodynamic water pump
examined [145Q,143Q,144Q]. A new graphical tech-

nique is presented for assessing the integration of
utility systems; a work exchanger network is proposed
analogous to the existing heat and mass exchanger net-

works, and a radiator system presented as an alterna-
tive to traditional air conditioning [150Q,148Q,146Q].

19. Heat transfer applications: general

19.1. Aeronautics

A study of the cooling of aerospace planes at the
stagnation point, leading edges of wings, and engine

parts by various gases ®nds hydrogen as the clear win-
ner [1S]. A new model for the prediction of recombina-
tion rates of O and N atoms at silica reentry

protection systems is based on realistic surface poten-
tials [5S]. All 4 space shuttle orbiters were instrumen-
ted for measurement of heat transfer rates and the

results are now compared with previous measurements
and analysis [2S]. The ®bers in ceramic composites

have to be coated to obtain adhesion in reinforced cer-
amic composites. This was studied in a reaction
chamber [3S]. Bolted joints cannot be recommended in

satellites [4S]. The design of the cooling system for a
lunar base recommends a Rankine cycle for the heat
pump [6S]. A thermally controlled test chamber is

based on the principle to convect the heat by a layer
of cool air away from the chamber [7S].

19.2. Bioengineering

The microvascular system of a tissue is modeled by
a quasiporous medium in an equivalent tube. From ex-

perimental results it is concluded that venovenous per-
fusion can predictably induce hyperthermia [18S]. An
inverse method is used to optimize heating conditions
in RF-capacitive hyperthermia [17S].

Water transport in meat was studied in an oven at
175C showing that water moves initially toward the
center but reverses its direction when the center has

reached about 70C [16S]. The heating process in laser
heating induced thrombosis of microvessels was pre-
dicted by a simple heat transfer model [14S], also the

temperature drop and weight loss during meat chilling
[8S]. Theoretical and experimental aspects of freeze
drying of dairy biomaterials are discussed [13S]. An

analysis of freeze drying is based on a model consider-
ing a uniformly retreating ice front in a body of spheri-
cal geometry [11S]. A model for the study of heat
transfer in tissues is developed and tested using a coun-

ter-current network [9S]. A new algorithm for identify-
ing the temperature and space dependent conductivity,
blood perfusion rate, metabolic rate, and thermal di�u-

sibility is proposed and tested [10S].
A new technique for the production of high purity

polymers for biomedical purposes is developed and

tested by experiments [15S]. A mathematical model for
the cooking of cocktail shrimp describes the heat trans-
fer and microbial inactivation kinetics in agreement
with experimental data [12S].

19.3. Digital data processing/electronics

The ®rst paper in this section o�ers an overview of

cooling technology of electronic systems, characterizing
the fan performance and the systems impedance (press-
ure drop) in the laminar and turbulent ¯ow regimes

[19S]. Heat is removed from the printed circuit board
to a cooled metal plate (copper, aluminum, molyb-
denum or alloy) with channels for liquid or air coolant

¯ow [21S]. Attempts to predict the temperature and
stress ®eld are made di�cult by the involved geometry
and length and time scales occurring [22S]. Graphite
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®ber reinforced aluminum and copper are considered
for module frames providing support and heat sinks.

The thermal conductivities are measured [20S].

19.4. Energy

A new model for predicting heat transfer in the
rotary combustion engine was formulated [33S]. Com-
bustion technology for gas turbines is reviewed [27S].

A calculation method addresses the temperature distri-
bution in turbine blades [29S]. Heat transfer measure-
ments are reported for endwalls and guide vanes of

turbine blades [37S]. Recent modeling of low emission
gas turbine combustors includes ®nite rate chemistry
and turbulence [28S].

The radiant e�ciency of 4 gas burners was evaluated
based on spectral radiosity measurements [38S].
A model based on conservation equations serves to

evaluate the e�ectiveness of dry-cooling systems [26S].

A paper reviews implementation of combined heat
and power systems [34S]. The pressure response of a
water wall containment cooling system was evaluated

experimentally [31S]. A new system of this type is
described [30S]. The boilo� pattern in the high press-
ure core was observed following a small break loss of

coolant accident [35S]. The operation of an isolation
condenser submerged in a large water pool was
observed and evaluated [32S].

The pressure rise and boiling process of the thermo-
¯uid ITER in a Tokamak plant during a transient
accident is studied experimentally [39S]. The screw
tube is compared in its action with the swirl tube for

the cooling of experimental fusion machines [23S].
The oil heating requirements of ¯oating storage

vessels for crude oil are studied [25S]. Phase change

thermal energy storage using spherical capsules is
studied for refrigeration and air conditioning [24S].
Experimental research studied a 5 mm diameter coaxial

pulse tube made of nylon used for a refrigerator [40S].
The thermal resistance of a ball bearing and heat

transfer by conduction, convection and radiation is
analyzed by computation [36S].

19.5. Environment

The LEK diagram is described as a means to predict

overall heat transfer coe�cients for building envelopes
[45S]. Composite absorbents have better heat transfer
characteristics than granular packed beds for heat

pump applications [46S]. Thermal testing results are
reported for ®ber-reinforced plastic building envelopes
[41S]. Several correlations describing convection heat

transfer for interpane window cavities are examined
and their backgrounds discussed [51S]. Experiments
studied the insulating behavior of layers of textiles

under wind assualt [42S]. Overall heat transfer coef-
®cients of existing wall systems in Turkey were

measured. It was found that insulation of the external
wall would reduce heating demand by ®fty percent
[43S]. Plate heat transfer technology can handle all hot

¯uid demands of hotels and prisons [50S].
The use of the ground as heat source for heat

pumps was studied by computer simulation [44S]. The

thermal environment of a wellbore is required for a
thermal wellbore analysis [48S]. Available software and
publications for ground source heating, ventilation and

air conditioning are discussed [47S].
Arti®cial circulation of water can in¯uence average

lake temperature [49S]. Environmentally friendly poly-
mer additives to halogenated ¯ame retardants are

explored [52S].

19.6. Manufacturing

A large number of papers was again published on
castings. Programs for development of models [77S]
for continuing casting, strain analysis [56S], mold pow-

ders [53S, 54S], simulations of solidi®cation [65S], sur-
face crack formation [79S,80S], process time reduction
[66S], cooling [55S], thin strip casting [67S], steel ¯ow

and heat transfer [73S] are available.
Three inverse methods estimate heat ¯ux and con-

vection distribution in a work piece subjected to grind-

ing [62S,63S]. Partitioning of heat between two sliding
bodies determines grinding process [74S]. Critical fac-
tors for thermal damage [75S] are compared for the
cutting process [76S].

Analysis considers conditions for metal weld crack-
ing [61S] as well as micropore formation in spray de-
position [59S]. The cooling process is investigated for

strip cooling [64S] for castings [72S] and for clinkers
[58S].
Finite element analysis is applied to machining

[68S,70S].
Heat transfer and ¯uid ¯ow are studied for extruder

processing of polymers [57S], for microwave heating of
polymers [69S]. The thermal conductivity and contact

conductance have been measured in the range 108C±
1008C [71S].
The heat e�ect in sorption of organic vapors in rub-

bery polymers is studied experimentally and analyti-
cally [78S]. A new technique studies nonisothermal
crystallization of polymers at high cooling rates [60S].

19.7. Processing

The study of the heat transfer processes by computer

analysis or experiments is extended to more and more
manufacturing processes.
A new method is proposed for calorimetry of stirred
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tank reactors [105S]. Thermophoretic vapor deposition
[106S], injection molding [96S], dendritic growth in

solidi®cation [86S], and heat transfer in ¯owing poly-
mers [94S] were studied. Thermophoresis can decrease
particle transfer in a laminar boundary layer by two

orders of magnitude [83S]. Russian developed aerody-
namic furnaces [104S], process safety [88S] are dis-
cussed. Calculations of ¯ame impingement heat

transfer are compared with experiments [81S]. Laser
heating of engineering materials [107S,108S] and of
particles [99S] found attention. Platelet growth is a

desirable means for crystal growth [98S,91S]. Simple
models can describe the process in furnaces [103S] and
rotary kilns [82S]. Experiments carried out at the Inter-
national Flame Research Foundation [95S] clari®ed

the e�ect of fuel/air mixing on Nox reduction. Heat
transfer was studied in strip rolling [100S], in rotating
roll [84S], and in a cement rotary kiln [87S]. Theory

and experiments clarify heat transfer at thermoplastic
sheet formation [93S].
The drying process is optimized for batch dryers

[90S]. The temperature distribution is estimated based
on experiments in sterilization and cooling of canned
products [85S]. A polypropylene particle was sus-

pended in a high temperature oil bath to measure the
overall heat transfer coe�cient with end-over-end ro-
tation [102S]. Heat transfer and thermal stress for-
mation are formulated for continuous quenching of

aluminum plates [101S]. Drying-induced stress is
reviewed for elastic, viscous, and viscoelastic materials
[89S]. E�ects of variable properties and viscous dissipa-

tion is considered for optical ®ber drawing of fused
silica [92S]. The heat load in a mine ventilation net-
work is simulated for various geothermal parameters

[97S].

20. Solar energy

Reviewed papers include research on solar thermal
technologies, resource assessment and use of renewable
energy and energy conservation in buildings. Papers

that do not address heat transfer issues, for example,
papers dealing speci®cally with photovoltaics or wind
energy, are not included.

20.1. Radiation characteristics and related e�ects

The majority of the published research concerns

methods to improve predictions of solar radiation. In-
terpretation of satellite images are discussed by
[2T,4T]. Models include a statistical regression to pre-

dict daily radiation in locations or during periods of
time for which measured data are not available [1T], a
physically based model of the radiative balance over

snow [3T], use of monthly average values to predict
hourly values [8T], and a new algorithm to determine

the integral Rayleigh optical thickness [5T]. A com-
parison of models of di�use radiation for prediction of
total radiation on tilted surfaces is presented by [9T].

Site speci®c date are an inventory of heat ¯uxes from
residential and industrial sections of Lodz, Poland
[6T]. A new optical method to measure directional

spectral emissivity and surface temperature is used in a
high ¯ux solar furnace [7T].

20.2. Nonconcentrating collectors

The maturity of the ®eld of nonconcentrating solar
collectors has resulted in a continuing decrease in the

number of papers on this topic. Analytical studies
address solar gain and heat storage characteristics of a
collector constructed of soil/sand/concrete [10T], com-
parison of predicted and measured gas conduction in

an evacuated tube solar collector [11T], optimization
of ¯at-plate air collectors [12T], characterization of
natural convection in a corrugated enclosure [13T],

and a model for estimating the thermal resistance of
the absorber/coolant in systems using advanced heat
transfer mediums [14T]. Experimental data are pre-

sented for a pentane-based collector intended for solar
thermal water pumping [15T]. Measurements of sto-
rage tank temperature are used to estimate collector

optical and heat loss characteristics for a water heating
system [16T].

20.3. Concentrating collectors and systems

The topics considered are divided into two cat-
egories: concentrator/re¯ectors and receivers. In the
area of concentrators, [22T] presents experimental data

showing that a solar concentration of 50,000 is poss-
ible with a dielectric, nonimaging concentrator. A two
stage concentrator with on-axis tracking intended for

use with high e�ciency solar cells achieves concen-
trations as high as 300 [17T]. [26T] describes a focusing
concentrator that uses two re¯ecting troughs. He com-

pares performance of this design to that of convention-
al parabolic toughs. [21T] shows how tailored edge-ray
concentrators in two-stage solar collectors can be con-
structed using a simple method of strings. Modeling of

thermal and optical behavior of line-axis concentrating
collectors is discussed in terms of modi®cations in ge-
ometry [19T]. Surface characterization of parabolic

re¯ecting surfaces using close range photogrammetry is
demonstrated [27T].
Work on receivers addresses the suitability of model-

ing arrays as a homogeneous medium [25T], re®nement
of an analytical technique for the prediction of ¯ux
distribution on receiver surfaces [20T], modeling of
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¯ow in volumetric receivers [24T], heat transfer
through gases at low pressures [18T], and analysis of

radiation and conduction through honeycomb-cored
panels for use in a space based power system [23T].

20.4. Buildings

Energy conservation in buildings continues to attract
signi®cant research on materials and simulation

models. Papers that relate primarily to fenestration
include design charts for appropriate selection of mul-
tiple glazed windows in terms of thermal, sound, day-

light and solar transmission [43T], models of solar heat
gain in windows with a venetian blind inside double
glazing [39T,40T], e�ect of glazing shape on energy

consumption in a commercial building [38T], and mod-
eling of solar gain through windows for three sites in
Jordan [46T].
Studies associated with the building envelope include

modeling of radiation and conduction across transpar-
ent honeycomb insulation [29T], development of simple
algorithms to predict energy savings of transparent

insulation [35T], an experimental study to evaluate the
impact of various radiant barrier systems on cooling
loads [28T], experimental characterization of energy

consumption due to in®ltration [32T], use of the over-
all transfer value to predict heat gain through external
walls and roofs of large buildings [30T], a review of

the interaction between environment and damage of
concrete [44T], and transient modeling of vertical tem-
perature distributions in an atrium [47T]. More applied
studies are experimental comparison of ®ve protected

membrane roofs installed between 1981 and 1992
[36T], simulation of heat exchange through structural
panels commonly used in refrigerating storage [34T], a

model of the heat transfer from cattle useful for the
design of livestock buildings [33T], determination of
heat demand in public baths [49T], assessment of occu-

pancy patterns on solar heating contribution of roof
space solar energy collectors [41T], discussion of use of
the roof as a solar collector [45T,48T], comparison of
three thermal simulation programs) ESP, HTB2 and

SERIRES) for a range of passive designs used in the
UK. [42T], and minimization of heating and venti-
lation costs in greenhouses [37T]. [31T] assess the

impact of using di�erent weather ®les on building
energy use predicted by BLAST.

20.5. Water and space heating

Characterization of the e�ect of various o�-peak
and water use schedules on thermal e�ciency of elec-

tric water heaters is intended to allow comparison of
water heating technologies (including solar) for re-
duction of peak electrical demand [52T]. [51T] com-

pares use of various renewable sources for integration
with residential heat pumps in Poland. [50T] models

heat transfer from ®nned surfaces in a thermal storage
tank.

20.6. Cooling and refrigeration

[53T] presents and analytical solution for the e�ect
of air on heat and mass transfer rates during absorp-

tion of water vapor from a ®lm of lithium bromide
¯owing down a vertical wall. The heat exchangers in
20-ton lithium bromide/water absorption cooling sys-

tem were optimized in terms of system cost [56T]. In
related papers, the e�ects of various operating and de-
sign parameters on solar fraction are modeled

[57T,58T].
Thermodynamic optimization of solar-driven re-

frigerators is presented by [55T]. Limited experimental

data on a carbon±ammonia refrigerator driven by a
thermosyphon heat pipe are presented along with
plans to develop a solar ice maker [54T].

20.7. Storage

Papers that address the use of storage as part of a

system are discussed by application in the appropriate
section. See, for example papers [84T,89T,92T] in the
section on power generation, and Ref. [50T] in the
water and space heating section.

[59T] suggests that exergy e�ciency is the most
appropriate value to determine storage e�ciency. The
paper evaluates variable and constant temperature sys-

tems. [62T] examines entropy production in a cylindri-
cal sensible heat storage system. [60T] considers
irreversibilities of a latent heat storage module with a

cylindrical shell surrounding a coaxial tube. A two-
dimensional model of melting in a rectangular en-
closure heated from one side shows heat transfer is
dominated by convection [61T]. [63T]'s numerical

model of latent heat storage placed in the ground indi-
cates that thermal performance is dominated by ther-
mal di�usivity of the phase-change material. [64T]

predicts the performance of a thermal storage system
in which pipes with brine ¯owing inside are sequen-
tially charged and discharged. The model focuses on

the formation of ice and liquid on the outside of the
pipes.

20.8. Stills and desalination

A new desalination process that dehumidi®es air by
pervaporation through hydrophilic or microporous

hydrophobic hollow ®bers and then dehumidi®es with
cooling water is investigated in a 6 liter/hour pilot
plant. Solar energy is suggested as one possible heat
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source for the hot water that passes through the hol-
low ®bers in the recycled air-sweep pervaporation pro-

cess [65T].
The majority of papers on solar stills present models

to predict e�ects of various design parameters on per-

formance of traditional designs. [66T] considers the
e�ect of evaporation area on distillation yield. Analysis
of the e�ects of inlet water temperature and ¯ow rate

on heat and mass transfer is presented by [67T]. A
series of papers model the e�ects of glass cover incli-
nation [68T,71T], water ¯ow rate over the glass cover

[72T], and collector area in a system with a collector
and heat exchanger [70T]. Comparison of temperatures
and heat and mass transfer rates in solar stills and
solar evaporators shows that evaporation in stills is

much less than that in open evaporation [69T]. [73T]
considers coating the transparent cover plate with
SnO2. [74T] applies a simple empirical model to show

the suitability of using solar stills to provide drinking
water in Iran.

20.9. Ponds

A one-dimensional model of a closed-cycle salt gra-

dient pond is used to investigate methods of salt
cycling. Results indicate seasonal surface ¯ushing is the
most desirable [75T]. Models of mixing and entrain-

ment due to an injecting di�user are presented to ana-
lyze a new gradient maintenance technique for salt-
gradient ponds [76T]. Stability analysis of layers with

adverse temperature gradients is used to model ponds
where the salt concentration gradients is intended to
prevent convective mixing induced by absorption of

solar radiation [77T]. Enhancement of storage in the
ground beneath solar ponds predicts as much as a
36% reduction in salt requirement [78T]. [79T] presents
®eld tests of a nonsalt pond for greenhouse heating.

20.10. Cooking and drying

The two papers in this study present preliminary test
data for a prototype V-groove back-pass solar air col-

lector intended for drying [81T] and a coconut oil ¯at-
plate collector for solar cooking [80T].

20.11. Solar chemistry

[82T] present experimental data of demonstration of

photocatalytic oxidation with titanium dioxide of
wastewater from 5-¯uorouracil manufacturing. The ad-
dition of hydrogen peroxide increased reaction rates.

At UV intensities as low as 15 W/m2 decolorization
rate remained high. Destruction of organic compounds
in water was studied using titanium dioxide supported

on silica gel. Both model and experiments are pre-
sented [83T].

20.12. Power generation and industrial applications

This diverse group of papers address sensible heat
storage in conjunction with dish-Stirling systems

[89T], thermoelectric generation [85T], direct steam
generation in parabolic trough power plants [88T],
combined power generation and desalination in an

OTEC plant [91T], use of seawater as the working
¯uid in a regenerative-reheat cycle [90T], Kalina
absorption power cycles [86T], metal hydride hydro-

gen storage in hydrogen energy systems [92T], control
of solar process heat plants [87T], and heat storage
of magnesium nickel hydride used for recovering

waste heat [84T].

21. Plasma heat transfer and magnetohydrodynamics

21.1. Plasma characterization

A thermodynamic description of an atmospheric
pressure nonequilibrium plasma in supersonic nozzle
¯ow is presented by Chen and Eddy [1U]. Thermodyn-

amic relations are extended to include deviations from
composition equilibrium without going through a full
scale chemical kinetics calculation, and the results are

presented in the form of multi-dimensional graphs.
The in¯uence of tungsten vapor on the thermodynamic
and transport properties of an SF6 plasma is presented

by Chervy [2U] in the form of results of property cal-
culations, and the conclusion is reached that below a
molar concentration of 10% only the electrical conduc-
tivity is a�ected. Tsintsadze et al. [9U] present a theory

of a plasma in equilibrium with a blackbody radiation
®eld. The interaction of an electric arc with a trans-
verse magnetic ®eld is described by Speckhofer and

Schmidt [8U] using experimental and theoretical
results, including a time dependent simulation of arc
instabilities at large magnetic ®elds. A description of a

microwave generated nonequilibrium hydrogen plasma
uses a three-temperature thermochemical model, and
this model is applied to a diamond deposition reactor
[7U]. Several studies concern themselves with descrip-

tion of plasmas in arcjet thruster con®gurations. Megli
et al. [3U] use a two-temperature model with the com-
position calculated with a chemical kinetics approach,

with the results demonstrating the expected strong de-
viations from equilibrium for the case of a N2/H2 arc-
jet. A similar calculation is presented for a hydrogen

arcjet in [5U] with a somewhat di�erent numerical
approach. The erosion of the cathode of a magneto-
plasma dynamic thruster has been modeled using a
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®nite element algorithm [4U]. An experimental study
using mass spectrometry and optical spectroscopy in a

low pressure plasma jet has been used to characterize
the conditions which are expected during entry into
the atmosphere of Mars or Titan [6U]. In a review

article, Zhukov proposes a classi®cation method for
plasma torches and describes various applications of
the torches [10U].

21.2. Laser±plasma interaction

A self-consistent model of the absorption pro®le of

an ultrashort laser pulse by a high density plasma is
given by Rozmus et al. [12U]. The interaction between
a laser pulse and the plasma in front of a solid is simu-

lated by Mazhukin et al. [11U].

21.3. Applications

A number of publications deal with describing plas-
mas under conditions and in con®gurations for speci®c
applications. The plasma heating of a tundish is simu-
lated by modeling a steam jet impinging on water

[13U]. The problem of increasing the plasma generator
power in a ladle furnace is addressed by Neuschuetz
and Stueber [25U], and the result shows that addition

of up to 40% CO2 to the argon as plasma gas will sig-
ni®cantly increase power dissipation and heating rate
while adding only an insigni®cant amount of oxygen

take-up by the metal. Two papers deal with plasma
cutting issues, one describing a model for the heat ¯ux
distribution in the work piece [21U], the other model-

ing the movement of the liquid metal inside the cut, in-
dicating a reduced heat transfer rate after formation of
the liquid metal layer [24U]. Two papers deal with arc
welding, one describing results of a simulation of the

heat transfer and ¯uid ¯ow for di�erent arc currents,
electrode geometries and arc lengths [16U], the other
showing results for a new method of underwater weld-

ing using gas shielding to reduce the arc pressure
[15U].
Three papers are concerned with the plasma±particle

interaction in plasma spray applications, two describ-
ing the particle heating and trajectories in d.c. spray
jets [27U,19U], and the third one analyzing the heat
transfer and ¯uid ¯ow in a d.c.±r.f. hybrid reactor

[23U]. Plasma treatment of titanium carbide powders
is described in two publications by the same group of
authors, one presenting a study of the in¯uence of the

particle injection on the r.f. plasma [29U], the other
concentrating on the evaluation of the morphology
and composition of the powders in the experiments

[18U]. Synthesis of WC-Co powders in an argon-
hydrogen plasma with acetylene as carbon source is
described by Fan et al. [17U], and the need for hydro-

gen for improving the heat transfer and avoiding for-
mation of carbon particulates is pointed out.

Two papers are concerned with the plasma surface
hardening process of steel, one using a ®nite element
model for describing the thermal di�usion of the nitro-

gen in the solid [26U], the other presenting some ex-
perimental results to verify the model predictions
[20U].

Plasma heat transfer in the processing of microelec-
tronic components is the subject of two papers, one
describing the measured temperature rise of a multi-

layer structure on a silicon substrate exposed to a low
pressure argon-hydrogen plasma [22U], the other pre-
senting a model for wafer heating during etching as a
function of ion ¯ux to the surface, helium cooling of

the backside, and di�erent wafer clamping arrange-
ments [28U]. A model for the heat dissipation in
plasma based ozone generators and its in¯uence on the

ozone generation e�ciency is presented by Bes et al.
[14U].

21.4. Magnetohydrodynamics

MHD continues to provide interesting problems for
numerical model solutions, although majority of the
publications treat applications other than MHD power

generation. An analysis of the thermal e�ciency of a
MHD generator based on optimal power density and
including component ine�ciencies is given by Sahin et

al. [40U]. Several papers deal with the in¯uence of a
magnetic ®eld perpendicular to a free convection ¯ow
®eld of an electrically conducting ¯uid with di�erent

con®gurations: along a semi-in®nite vertical plate with
radiation heat transfer included [41U], inside a cubic
enclosure [39U], from a horizontal cylinder with forced
convection included [31U], for the same con®guration

but with the cylinder inside a porous medium [30U],
from a cone and a wedge inside a porous medium
[36U], within a shallow porous cavity [34U], and

within an inclined rectangular porous cavity [35U]. In
general, results are obtained for di�erent boundary
conditions and/or for di�erent values of the governing

dimensionless parameters, e.g. Hartmann number and
Rayleigh number.
Further modeling results include con®gurations of

MHD ¯ow between two in®nitely long, insulated par-

allel plates with one plate moving and the other
stationary [32U], and past a continuously moving por-
ous plate with a similarity transformation for investi-

gating the e�ect of suction or injection, and magnetic
®eld on heat transfer and skin friction [37U]. The
e�ects of a combination of rotation and translation of

a rotating disk on the MHD ¯ow of an electrically
conducting, compressible viscous ¯uid are described in
[33U]. Hung et al. ®nd that the instabilities in a MHD
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¯ow of a condensate ®lm along a vertical plate with
constant heat ¯ux can be reduced by the applied mag-

netic ®eld [38U].
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